
<2021-12-01 Mi> Dr. Arne Babenhauserheide / draketo.de

Advent of Wisp Code 2021

Taking part in the advent of code to relax as much as I find time to do. I’ll use Wisp.

Check the RSS-Feed to get informed when I solve puzzles.

I take them up with delay, because I work during the day and have family.

Licenses: cc by-sa for image and text, AGPLv3 or later for the code.

1/86

https://www.draketo.de
https://adventofcode.com/2021/
https://www.draketo.de/software/wisp.html
https://www.draketo.de/software/advent-of-wisp-code-2021.xml
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/agpl

Contents

1 Day 1, puzzle 1: Sweep the deep 4

2 Day 1, puzzle 2: Sweep the deep averages 5

3 Day 2, Puzzle 1: Pilot the submarine 6

4 Day 2, Puzzle 2: Aim the submarine 7
4.1 Update: simple shell-script . 8

5 Day 3, Puzzle 1: Diagnose a Dive 9

6 Day 3, Puzzle 2: Diagnose for Life 11

7 Day 4, Puzzle 1: Cheat the Squid 12

8 Day 4, Puzzle 2: Let the squid win 15

9 Day 5, Puzzle 1: Sidestep the vents 16

10 Day 5, Puzzle 2: Sidestep the vents diagonally 18

11 Day 6, Puzzle 1: Model Exponential Fish 19

12 Day 6, Puzzle 2: Model Exponential Fish in Memory 20

13 Day 7, Puzzle 1: Align Fuel Constrained Crab Guns 22

14 Day 7, Puzzle 2: Align Stingy Crab Guns 23

15 Day 8, Puzzle 1: Which numbers are shown? 24

16 Day 8, Puzzle 2: Which numbers are shown? 26

17 Day 9, Puzzle 1: Avoid smoke-sinks 30

18 Day 9, Puzzle 2: Discover Smoke Lakes 32

19 Day 10, Puzzle 1: Pick Wrongly Paired Parens 35

20 Day 10, Puzzle 2: Cleanly close closables 37

21 Day 11, Puzzle 1: Flashing Octopuses 38

22 Day 11, Puzzle 2: Flash together, right now 41

23 Day 12, Puzzle 1: All the exciting trails 42

2/86

24 Day 12, Puzzle 2: Accept boredom just once 44

25 Day 13, Puzzle 1: Fold your password 48

26 Day 13, Puzzle 2: Fold your password 51

27 Day 14, Puzzle 1: Polymer-synthesis 52

28 Day 14, Puzzle 2: predict the element disbalance 55

29 Day 15, Puzzle 1: Path planning 58

30 Day 15, Puzzle 2: Larger path planning 62
30.1 Simple Priority Queue . 65
30.2 Purely Functional Priority Search Queue 69

31 Day 16, Puzzle 1: Read Elf Transmission 74

32 Day 16, Puzzle 2: Math for Elves 79

33 Day 17, Puzzle 1: Aim for the Area 83

34 Day 17, Puzzle 2: All the values 86

3/86

1 Day 1, puzzle 1: Sweep the deep

Count how often the depth of the ocean increases.

import : srfi :1 lists
srfi :9 records

define example-input ' : 199 200 208 210 200 207 240 269 260 263

;; aggregate using a two number window.
define : count-larger current next count

+ count : if {next > current} 1 0

display
fold count-larger 0

;; dropping the first element of the second list
;; this shifts the second element in count-larger by 1 => next
. example-input
drop example-input 1

For the real calculation, I plugged in the input via define input ’(...).

Hacky but quick.

4/86

2 Day 1, puzzle 2: Sweep the deep averages

Count how often the three element moving sum of the depth increases.

import : srfi :1 lists
srfi :9 records

define example-input ' : 199 200 208 210 200 207 240 269 260 263

;; aggregate using a 4 number window.
define : count-larger n0 n1 n2 n3 count

+ count : if {(+ n1 n2 n3) > (+ n0 n1 n2)} 1 0

display
fold count-larger 0

. example-input
drop example-input 1
drop example-input 2
drop example-input 3

I’m not fully happy with this code — it is longer and more complex than I’d like it to
be. But it solves the problem. For a quick fix it is OK, and the adaption from puzzle 1
to puzzle 2 was easy, which is a good sign.

5/86

3 Day 2, Puzzle 1: Pilot the submarine

Read instructions to find the position when following them.

These look like wisp: I’m trying to turn them into code.

The input is now written to a file:

forward 5
down 5
forward 8
up 3
down 8
forward 2

define horizontal 0
define vertical 0
define-syntax-rule : inc var steps

set! var {var + steps}
define-syntax-rule : dec var steps

set! var {var - steps}
define (forward steps) : inc horizontal steps
define (down steps) : inc vertical steps
define (up steps) : dec vertical steps

;; load the input as code
;; load "advent-of-wisp-code-2021-d2p1-real-input.w"
load "advent-of-wisp-code-2021-d2p1-example-input.w"

display {horizontal * vertical}

6/86

4 Day 2, Puzzle 2: Aim the submarine

The input is the same, but the code is different.

define aim 0
define horizontal 0
define vertical 0
define-syntax-rule : inc var steps

set! var {var + steps}
define-syntax-rule : dec var steps

set! var {var - steps}
;; the commands and the presence of aim are all that changes:
define (forward steps)

inc horizontal steps
inc vertical {aim * steps}

define (down steps) : inc aim steps
define (up steps) : dec aim steps

;; load the input as code
;; load "advent-of-wisp-code-2021-d2p1-real-input.w"
load "advent-of-wisp-code-2021-d2p1-example-input.w"

display {horizontal * vertical}

I actually like this code quite a bit, and adjusting it from puzzle 1 to puzzle 2 was a
breeze. It’s still a hack, though . . .

7/86

4.1 Update: simple shell-script

While the previous version is kind of a hack (but one that uses a method I actually use
to write games), it would be an even funnier hack to replace the auto-pilot with a simple
shell script.

export AIM=0
export HORIZONTAL=0
export VERTICAL=0
function inc() {

export ${1}=$((${1} + ${2}))
}
function dec() {

export ${1}=$((${1} - ${2}))
}
function forward () {

inc HORIZONTAL ${1}
inc VERTICAL $((${AIM} * ${1}))

}
function down () {

inc AIM ${1}
}
function up () {

dec AIM ${1}
}
source "advent-of-wisp-code-2021-d2p1-example-input.w"

echo $(($HORIZONTAL * $VERTICAL))

Would you bet your life on it? :-)

8/86

https://hg.sr.ht/~arnebab/dryads-wake

5 Day 3, Puzzle 1: Diagnose a Dive

Calculate the most common bit in each position. The resulting bits give the diagnostic
number γ. Using least common bit gives ε.

Example Input:

00100
11110
10110
10111
10101
01111
00111
11100
10000
11001
00010
01010

First define a helper function that was re-used a lot later: map-over-lines. This receives
a function and a filename and applies the function to every line read from the file.

;; snippet: {{{map-over-lines}}}
import : only (ice-9 rdelim) read-line
define : map-over-lines fun filename

let : : port : open-input-file filename
let loop : (lines '()) (line (read-line port))

if : eof-object? line
begin

close port
reverse! lines

loop
cons : fun line

. lines
read-line port

Also for both tasks of day 3, I need base2 tools:

;; snippet: {{{base2-functions}}}
define : base2->number str

. "read binary: a base2 number."
string->number str 2

9/86

define : numbers->string list-of-numbers
string-join

map number->string list-of-numbers
. ""

define : numbers->decimal list-of-numbers
base2->number

numbers->string list-of-numbers

define : split-line-into-numbers line
map string->number : map string : string->list line

Now the actual solution:

import : only (ice-9 rdelim) read-line

{{{map-over-lines}}}
{{{base2-functions}}}

define input
map-over-lines split-line-into-numbers

. "advent-of-wisp-code-2021-d3p1-example-input.dat"

define len/2 {(length input) / 2}

define most-common
map : λ(x) : if {x > len/2} #\1 #\0

apply map + input

define least-common
map : λ(x) : if (equal? x #\1) #\0 #\1

. most-common

define γ : base2->number : apply string most-common
define ε : base2->number : apply string least-common

display {γ * ε}

Originally this was more complex than I’d like it to be, but switching to map-over-lines
from Day 13, it got a lot cleaner.

10/86

6 Day 3, Puzzle 2: Diagnose for Life

Filter the numbers bit by bit, keeping only those where the bit in the given position is
the most common bit. If only one number remains, that’s the result.

import : only (ice-9 rdelim) read-line
srfi :9 records
only (srfi :26) cut

;; using map-over-lines again, this will be used many times over
{{{map-over-lines}}}
;; base2->number, numbers->string and numbers->decimal
{{{base2-functions}}}
define input

map-over-lines split-line-into-numbers
. "advent-of-wisp-code-2021-d3p1-example-input.dat"

;; most- and least-common as functions to use as aggregator
define : most-common input len/2

map : λ(x) : if {x >= len/2} 1 0
apply map + input

define : least-common input len/2
map : λ(x) : if {x >= len/2} 0 1

apply map + input
define : filt input aggregator bitindex

define len/2 {(length input) / 2}
define aggregated : aggregator input len/2
define : matches pattern bitindex

equal? : list-ref pattern bitindex
list-ref aggregated bitindex

filter : cut matches <> bitindex
. input

define : select aggregator
let loop : (input (filt input aggregator 0)) (next-bitindex 1)

if : = 1 : length input
car input
loop : filt input aggregator next-bitindex

+ next-bitindex 1

define oxygen : select most-common
define co2scrub : select least-common
display

* : numbers->decimal oxygen
numbers->decimal co2scrub

11/86

7 Day 4, Puzzle 1: Cheat the Squid

A squid attached to the ship. I need to cheat it in Bingo.

Known numbers that will be drawn, and bingo boards:

7,4,9,5,11,17,23,2,0,14,21,24,10,16,13,6,15,25,12,22,18,20,8,19,3,26,1

22 13 17 11 0
8 2 23 4 24

21 9 14 16 7
6 10 3 18 5
1 12 20 15 19

3 15 0 2 22
9 18 13 17 5

19 8 7 25 23
20 11 10 24 4
14 21 16 12 6

14 21 17 24 4
10 16 15 9 19
18 8 23 26 20
22 11 13 6 5
2 0 12 3 7

Both solutions of this day need to read the bingo board:

;; snippet: {{{bingo-board}}}
define-record-type <bingo>

make-bingo numbers boards
. bingo?
numbers bingo-numbers bingo-numbers-set!
boards bingo-boards bingo-boards-set!

define : split-bingo-line line
if : eof-object? line

list
map string->number : delete "" : string-split line #\space

define bingo
let : : port : open-input-file

"advent-of-wisp-code-2021-d4p1-example-input.dat"↪→

define numbers : map string->number : string-split (read-line
port) #\,↪→

12/86

;; skip separator line
read-line port
define boards

let read-board : (boards '())
if : eof-object? : peek-char port

reverse boards
read-board

cons
let loop : (board '()) (line (split-bingo-line (read-line

port)))↪→

if : null? line
reverse board
loop : cons line board

split-bingo-line : read-line port
. boards

close port
make-bingo numbers boards

define : play-number number board
map : λ(x) (map (λ(y) (if (equal? number y) #f y)) x)

. board

define : board-won? board
define : row-won? row

every not row
if ;; force explicit #t or #f

or
member #t : map row-won? board
member #t : apply map (λ(. x) (row-won? x)) board

. #t #f

On day one I want to win:

13/86

To cheat the squid, I need to find the sum of all the unmarked fields in the winning
board (the first to have one fully marked row or column).

Then multiply it with the winning number to get the result.

import : only (ice-9 rdelim) read-line
srfi :9 records
only (srfi :26) cut
only (srfi :1) every fold list-index

{{{bingo-board}}}

display
let loop : (boards (bingo-boards bingo)) (numbers (bingo-numbers

bingo))↪→

define played : map (cut play-number (car numbers) <>) boards
define result : map board-won? played
cond

: null? numbers
. #f

: member #t result
let : : winner : list-ref played : list-index (λ(x) x) result

* : car numbers
apply + : apply map (λ(. x) (apply + (delete #f x)))

winner↪→

else
loop played

cdr numbers

14/86

8 Day 4, Puzzle 2: Let the squid win

A squid attached to the ship. I need to let it win in Bingo. For sure. So I take the board
that wins last.

Need to find the sum of all the unmarked fields in the winning board (the first to have
one fully marked row or column).

Multiply it with the winning number.

import : only (ice-9 rdelim) read-line
srfi :9 records
only (srfi :26) cut
only (srfi :1) every fold list-index remove

{{{bingo-board}}}

display
let loop : (boards (bingo-boards bingo)) (numbers (bingo-numbers

bingo))↪→

define played : map (cut play-number (car numbers) <>) boards
define result : map board-won? played
cond

: null? numbers
. #f

: every identity result
;; choose the first of the last winners

let : : winner : list-ref played 0
* : car numbers

apply + : apply map (λ(. x) (apply + (delete #f x)))
winner↪→

else
loop : remove board-won? played

cdr numbers

The adjustment worked very well: the only changes are in the final let loop:

• replace loop played by loop : remove board-won? played and

• replace member #t result by every identity result and

• always take the first of the last winners.

15/86

9 Day 5, Puzzle 1: Sidestep the vents

Draw lines and find meeting points.

0,9 -> 5,9
8,0 -> 0,8
9,4 -> 3,4
2,2 -> 2,1
7,0 -> 7,4
6,4 -> 2,0
0,9 -> 2,9
3,4 -> 1,4
0,0 -> 8,8
5,5 -> 8,2

import : only (ice-9 rdelim) read-line
only (srfi :26) cut
only (srfi :1) fold
ice-9 hash-table

define : pixels-for-line x0 y0 x1 y1
cond ;; only vertical and orthogonal lines

{y0 = y1}
map (cut cons <> y0)

if {x0 < x1} : iota (+ 1 {x1 - x0}) x0
iota (+ 1 {x0 - x1}) x1

{x0 = x1}
map (cut cons x0 <>)

if {y0 < y1} : iota (+ 1 {y1 - y0}) y0
iota (+ 1 {y0 - y1}) y1

else '()

define : line-coordinates line
map string->number : string-tokenize line char-set:digit

define : hash-add1 key al
hash-set! al key : + 1 : hash-ref al key 0
. al

define port : open-input-file
"advent-of-wisp-code-2021-d5p1-example-input.dot"↪→

display

16/86

hash-count : λ(key value) {value >= 2}
let loop : : coordinates : make-hash-table

define line : read-line port
if : eof-object? line

. coordinates
loop

fold hash-add1 coordinates
apply pixels-for-line : line-coordinates line

17/86

10 Day 5, Puzzle 2: Sidestep the vents diagonally

Draw lines and find meeting points.

import : only (ice-9 rdelim) read-line
only (srfi :26) cut
only (srfi :1) fold
ice-9 hash-table

define : pixels-for-line x0 y0 x1 y1
cond ;; only vertical and orthogonal lines

{y0 = y1}
map (cut cons <> y0)

if {x0 < x1} : iota (+ 1 {x1 - x0}) x0
iota (+ 1 {x0 - x1}) x1

{x0 = x1}
map (cut cons x0 <>)

if {y0 < y1} : iota (+ 1 {y1 - y0}) y0
iota (+ 1 {y0 - y1}) y1

else
map cons

if {x0 < x1} : iota (+ 1 {x1 - x0}) x0
iota (+ 1 {x0 - x1}) x0 -1

if {y0 < y1} : iota (+ 1 {y1 - y0}) y0
iota (+ 1 {y0 - y1}) y0 -1

define : line-coordinates line
map string->number : string-tokenize line char-set:digit

define : hash-add1 key al
hash-set! al key : + 1 : hash-ref al key 0
. al

define port : open-input-file
"advent-of-wisp-code-2021-d5p1-example-input.dot"↪→

display
hash-count : λ(key value) {value >= 2}

let loop : : coordinates : make-hash-table
define line : read-line port
if : eof-object? line

. coordinates
loop

fold hash-add1 coordinates
apply pixels-for-line : line-coordinates line

18/86

11 Day 6, Puzzle 1: Model Exponential Fish

Strange lanternfishes reproduce every 7 days, new fish initially reproduce after 9 days.
Model the population growth.

How many will there be after 80 days?

Input: The time to reproduce for each fish.

3,4,3,1,2

For this data format, a simplest possible csv parser is useful. I could use guile-dsv, but
I want to avoid libraries here to you can run the code without installing anything but
Guile and wisp. So here is the simplest tool to read commaseparated numbers from a
line of text:

;; snippet: {{{read-numbers-from-csv-line}}}
define : read-numbers-from-csv-line filename

let : : port : open-input-file filename
define res : map string->number : string-split (read-line port) #\,
close port
. res

For 80 days, I can use a naive approach and simply keep a list of numbers with the
reproduction time.

import : only (srfi :1) fold
only (ice-9 rdelim) read-line

{{{read-numbers-from-csv-line}}}

define input
read-numbers-from-csv-line

. "advent-of-wisp-code-2021-d6p1-example-input.dat"
define : reproduce time-to-reproduce prev

if : zero? time-to-reproduce
cons 8 : cons 6 prev
cons {time-to-reproduce - 1} prev

display
length
let rep : (steps 80) (swarm input)

if (zero? steps) swarm
rep {steps - 1} : fold reproduce '() swarm

19/86

https://github.com/artyom-poptsov/guile-dsv/
https://www.gnu.org/software/guile/
https://www.draketo.de/software/wisp.html

12 Day 6, Puzzle 2: Model Exponential Fish in
Memory

Now the goal is 256 days. That kills my memory for sure. Need a tighter datastructure.
Let’s use the keys for the lifetimes. The keys are contiguous integers, so why not a
vector?

3,4,3,1,2

import : only (srfi :1) fold
only (ice-9 rdelim) read-line

{{{read-numbers-from-csv-line}}}

define input
read-numbers-from-csv-line

. "advent-of-wisp-code-2021-d6p1-example-input.dat"

define swarm-lifetime-counts
let : : swarm : make-vector 9 0

for-each : λ (x) : vector-set! swarm x : + 1 : vector-ref swarm x
. input

. swarm

define : reproduce swarm
define reproducing : vector-ref swarm 0
;; reduce all lifetimes by 1
for-each

λ (lifetime)
vector-set! swarm {lifetime - 1} : vector-ref swarm lifetime

iota 8 1
;; add the reproducing to lifetime 6 and 8
vector-set! swarm 6 : + reproducing : vector-ref swarm 6
vector-set! swarm 8 reproducing
. swarm

display
apply +

vector->list
let rep : (steps 256) (swarm swarm-lifetime-counts)

if (zero? steps) swarm
rep {steps - 1} : reproduce swarm

20/86

Since the fish with the real data are in the trillions, no way I could have done this with
the plain list. Each pointer in a linked list needs around 8 byte; just the datastructure
would have eaten all my memory many times over. Even a naively optimized tight array
with 3-bit-numbers would not have enabled that.

With the new index-counting vector datastructure though, I can easily do 2560 steps.
With the example data, the resulting number has 98 digits. 256000 steps take about a
second to compute a number with 9687 digits.

Computers are fast.

21/86

13 Day 7, Puzzle 1: Align Fuel Constrained Crab
Guns

Crabs come to blast a path into a cave. You must align them: Find the positions where
they need to move the least amount of steps so their guns can interlock into one big gun.

16,1,2,0,4,2,7,1,2,14

import : only (ice-9 rdelim) read-line
only (srfi :26) cut
only (srfi :1) list-index list-ref

{{{read-numbers-from-csv-line}}}

define crabs
read-numbers-from-csv-line

. "advent-of-wisp-code-2021-d7p1-example-input.dat"

define min-position : apply min crabs
define max-position : apply max crabs

define possible-positions
iota (+ 1 {max-position - min-position}) min-position

define : fuel-cost target-position crabs
define : fuel-cost crab

abs {crab - target-position}
apply + : map fuel-cost crabs

define costs : map (cut fuel-cost <> crabs) possible-positions
define min-cost : apply min costs
define ideal-position

list-ref possible-positions
list-index (cut equal? min-cost <>) costs

display min-cost

22/86

14 Day 7, Puzzle 2: Align Stingy Crab Guns

Movement cost now increases by one per step. Step 1 is 1. Step 2 costs 2, so it is 3.
Formula: (step * (step + 1)) / 2

16,1,2,0,4,2,7,1,2,14

import : only (ice-9 rdelim) read-line
only (srfi :26) cut
only (srfi :1) list-index list-ref

{{{read-numbers-from-csv-line}}}

define crabs
read-numbers-from-csv-line

. "advent-of-wisp-code-2021-d7p1-example-input.dat"

define min-position : apply min crabs
define max-position : apply max crabs

define possible-positions
iota (+ 1 {max-position - min-position}) min-position

define : fuel-cost target-position crabs
define : distance crab

abs {crab - target-position}
define : cost crab

define dist : distance crab
* 1/2 dist {dist + 1}

apply + : map cost crabs

define costs : map (cut fuel-cost <> crabs) possible-positions
define min-cost : apply min costs
define ideal-position

list-ref possible-positions
list-index (cut equal? min-cost <>) costs

display : format #f "position: ~a, cost: ~a" ideal-position min-cost

23/86

15 Day 8, Puzzle 1: Which numbers are shown?

I’m late on this, because a brief solution wasn’t directly obvious and I didn’t have much
time.

I have 10 patterns and 4 displays. Four numbers use a unique number of connections:

• 1: 2

• 4: 4

• 7: 3

• 8: 7

So basically I just need to count occurence of length of strings.

Input:

be cfbegad cbdgef fgaecd cgeb fdcge agebfd fecdb fabcd edb | fdgacbe cefdb cefbgd
gcbe↪→

edbfga begcd cbg gc gcadebf fbgde acbgfd abcde gfcbed gfec | fcgedb cgb dgebacf gc
fgaebd cg bdaec gdafb agbcfd gdcbef bgcad gfac gcb cdgabef | cg cg fdcagb cbg
fbegcd cbd adcefb dageb afcb bc aefdc ecdab fgdeca fcdbega | efabcd cedba gadfec cb
aecbfdg fbg gf bafeg dbefa fcge gcbea fcaegb dgceab fcbdga | gecf egdcabf bgf bfgea
fgeab ca afcebg bdacfeg cfaedg gcfdb baec bfadeg bafgc acf | gebdcfa ecba ca fadegcb
dbcfg fgd bdegcaf fgec aegbdf ecdfab fbedc dacgb gdcebf gf | cefg dcbef fcge gbcadfe
bdfegc cbegaf gecbf dfcage bdacg ed bedf ced adcbefg gebcd | ed bcgafe cdgba cbgef
egadfb cdbfeg cegd fecab cgb gbdefca cg fgcdab egfdb bfceg | gbdfcae bgc cg cgb
gcafb gcf dcaebfg ecagb gf abcdeg gaef cafbge fdbac fegbdc | fgae cfgab fg bagce

24/86

Code:

import : only (ice-9 rdelim) read-line
srfi :9 records
only (srfi :26) cut
only (srfi :1) second

define : split-result-into-length line
map string-length

string-tokenize
second : string-split line #\|
. char-set:letter

{{{map-over-lines}}}

define input
apply append

map-over-lines split-result-into-length
. "advent-of-wisp-code-2021-d8p1-example-input.dat"

define counter : make-vector 8 0

for-each : λ(len) : vector-set! counter len : + 1 : vector-ref counter
len↪→

. input

display
apply +

map (cut vector-ref counter <>)
list 2 4 3 7

25/86

16 Day 8, Puzzle 2: Which numbers are shown?

Now do the full mapping.

Use the left-hand patterns to recover the configuration.

import : only (ice-9 rdelim) read-line
srfi :9 records
only (srfi :26) cut
only (srfi :1) first second fold assoc
only (rnrs lists (6)) find

;;; problem definition
;; the numbers with letters for fields. The fields got scrambled.
;; 0: 1: 2: 3: 4:
;; aaaa aaaa aaaa
;; b c . c . c . c b c
;; b c . c . c . c b c
;; dddd dddd dddd
;; e f . f e . . f . f
;; e f . f e . . f . f
;; gggg gggg gggg
;;
;; 5: 6: 7: 8: 9:
;; aaaa aaaa aaaa aaaa aaaa
;; b . b . . c b c b c
;; b . b . . c b c b c
;; dddd dddd dddd dddd
;; . f e f . f e f . f
;; . f e f . f e f . f
;; gggg gggg gggg gggg

;; define number-by-length deciders
define : 1? string

= 2 : string-length string
define : 7? string

= 3 : string-length string
define : 4? string

= 4 : string-length string
define : 8? string

= 7 : string-length string
;; 6 numbers share lengths
define : 2-or-3-or-5? string

= 5 : string-length string
define : 0-or-6-or-9? string

= 6 : string-length string

26/86

;;; get the input
;; returns (pattern-part result-part)
define : split-into-strings line

map : cut string-tokenize <> char-set:letter
string-split line #\|

{{{map-over-lines}}}

define input-strings
map-over-lines split-into-strings

. "advent-of-wisp-code-2021-d8p1-example-input.dat"

define input-charsets
map

λ(line)
map : λ(x) : map string->char-set x

. line
. input-strings

;;; Calculate and apply the de-scrambling and calculation per line
define : process-one-line line-strings line-charsets

;; identify the char-sets for digits of unique length
define pattern-strings

first line-strings
define result-charsets

second line-charsets
define : find-matching-charsets string-matches? pattern-strings

fold
λ(string prev)

append
if : string-matches? string

list : string->char-set string
. '()

. prev
. '() pattern-strings

define one : first : find-matching-charsets 1? pattern-strings
define four : first : find-matching-charsets 4? pattern-strings
define seven : first : find-matching-charsets 7? pattern-strings
define eight : first : find-matching-charsets 8? pattern-strings
define zero-or-six-or-nine

find-matching-charsets 0-or-6-or-9? pattern-strings

27/86

define six
find : λ(x) : not : char-set<= one x

. zero-or-six-or-nine
define zero-or-nine

filter : λ(x) : char-set<= one x
. zero-or-six-or-nine

define nine
find : λ(x) : char-set<= four x

. zero-or-nine
define zero

find : λ(x) : not : char-set<= four x
. zero-or-nine

define two-or-three-or-five
find-matching-charsets 2-or-3-or-5? pattern-strings

define three
find : λ(x) : char-set<= one x

. two-or-three-or-five
define five

find : λ(x) : char-set<= x nine
delete three two-or-three-or-five

define two
first : delete five : delete three two-or-three-or-five

define charset-to-number
list

cons zero 0
cons one 1
cons two 2
cons three 3
cons four 4
cons five 5
cons six 6
cons seven 7
cons eight 8
cons nine 9

string->number
string-join

map number->string
map : λ(x) : cdr : assoc x charset-to-number char-set=

. result-charsets
. ""

28/86

write : apply + : map process-one-line input-strings input-charsets

This one was long, far longer than I would have liked. And with much more logic coming
in from me instead of the program. I wonder if micro-/minikanren or Prolog would
provide for a nicer solution.

29/86

17 Day 9, Puzzle 1: Avoid smoke-sinks

Find low points in height-map.

2199943210
3987894921
9856789892
8767896789
9899965678

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :1) fold

{{{map-over-lines}}}

define : string-letters->numbers line
. "turn every letter in the string into the base10 number it

represents"↪→

map string->number : map string : string->list line

define input
list->vector

map-over-lines
λ (line) : list->vector : string-letters->numbers line
. "advent-of-wisp-code-2021-d9p1-example-input.dat"

define len-y : 1- : vector-length input
define len-x : 1- : vector-length : vector-ref input 0

define : at vec x y
vector-ref (vector-ref input y) x

define : low-point? input x y
define up : and {y > 0} {y - 1}
define down : and {y < len-y} {y + 1}
define left : and {x > 0} {x - 1}
define right : and {x < len-x} {x + 1}
define val : at input x y
define : y-lowerequal y

>= val : at input x y
define : x-lowerequal x

>= val : at input x y
not ;; no accessible point may be lower or equal

30/86

or : and=> up y-lowerequal
and=> down y-lowerequal
and=> left x-lowerequal
and=> right x-lowerequal

define risk-levels
map
λ(y)

map : λ(x) : if (low-point? input x y) (+ 1 (at input x y)) 0
iota : + 1 len-x

iota : + 1 len-y

pretty-print
map : λ(x) : string-join (map number->string x) ""

. risk-levels

pretty-print : apply + : map (λ(row) (apply + row)) risk-levels

31/86

18 Day 9, Puzzle 2: Discover Smoke Lakes

Expand each low-point while the ground gets higher, except if it reaches 9.

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :1) fold every any lset-difference

delete-duplicates take↪→

only (srfi :26) cut
ice-9 string-fun

{{{map-over-lines}}}

define : string-letters->numbers line
. "turn every letter in the string into the base10 number it

represents"↪→

map string->number : map string : string->list line

define input
list->vector

map-over-lines
λ (line) : list->vector : string-letters->numbers line
. "advent-of-wisp-code-2021-d9p1-example-input.dat"

define len-y : 1- : vector-length input
define len-x : 1- : vector-length : vector-ref input 0

define : at vec x y
vector-ref (vector-ref input y) x

define : around x y
. "Get all points around the coordinate"
define up : and {y > 0} {y - 1}
define down : and {y < len-y} {y + 1}
define left : and {x > 0} {x - 1}
define right : and {x < len-x} {x + 1}
delete #f

list
and up : cons x up
and down : cons x down
and left : cons left y
and right : cons right y

define : low-point? input x y known

32/86

define val : at input x y
define : part-of-area? x y

or : member (cons x y) known
< val : at input x y

and {val < 9}
every : λ(point) : part-of-area? (car point) (cdr point)

around x y

define low-points
filter : λ(x) : low-point? input (car x) (cdr x) '()

apply append
map : λ(y) : map (cut cons <> y) : iota : + 1 len-x

iota : + 1 len-y

define : next x y known
define : open? point

and : not : member point known
. point

delete #f : map open? : around x y

define : expand-area area
define : expands-basin? val new

define newval : at input (car new) (cdr new)
< val newval 9

define : expand-point point
define val : at input (car point) (cdr point)
cons point

filter (cut expands-basin? val <>)
next (car point) (cdr point) area

delete-duplicates : apply append : map expand-point area

define areas
let loop : : areas : map list low-points

define open-points
lset-difference equal?

apply append
map expand-area areas

apply append areas
if : null? open-points

. areas
loop : map expand-area areas

define : basin-value x y

33/86

if : any identity : map (cut member (cons x y) <>) areas
at input x y
. 0

define area-levels
map
λ(y) : map (cut basin-value <> y) : iota : + 1 len-x
iota : + 1 len-y

pretty-print
map

λ(x)
string-replace-substring

string-join (map number->string x) ""
. "0" " "

. area-levels

pretty-print : apply * : take (sort (map length areas) >) 3

This is much too long for my taste, but I don’t see how to make it shorter.

34/86

19 Day 10, Puzzle 1: Pick Wrongly Paired Parens

Input:

[({(<(())[]>[[{[]{<()<>>
[(()[<>])]({[<{<<[]>>(
{([(<{}[<>[]}>{[]{[(<()>
(((({<>}<{<{<>}{[]{[]{}
[[<[([]))<([[{}[[()]]]
[{[{({}]{}}([{[{{{}}([]
{<[[]]>}<{[{[{[]{()[[[]
[<(<(<(<{}))><([]([]()
<{([([[(<>()){}]>(<<{{
<{([{{}}[<[[[<>{}]]]>[]]

Goal: Read the code and find a wrongly paired paren.

First parenthesis tools:

;; snippet: {{{paren-tools}}}
define opening : string->char-set "([{<"
define paired

'
#\(. #\)
#\[. #\]
#\{ . #\}
#\< . #\>

define : opening? char
char-set-contains? opening char

define : valid-char? letter-stack char
or : opening? char

equal? char : car letter-stack
define : process letter-stack char

if : opening? char
cons (assoc-ref paired char) letter-stack
cdr letter-stack

35/86

Now give the correct error codes:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :26) cut

{{{map-over-lines}}}
;; opening paired opening? valid-char? process
{{{paren-tools}}}

define input
map-over-lines : λ (x) x ;; unchanged line, identity

. "advent-of-wisp-code-2021-d10p1-example-input.dat"

define error-values
'

#\) . 3
#\] . 57
#\} . 1197
#\> . 25137

define : find-syntax-error line
let loop : (letter-stack '()) (open (string->list line))

cond
: null? open

. #f
: valid-char? letter-stack (car open)

loop : process letter-stack (car open)
cdr open

else
car open

pretty-print
apply +

map (cut assoc-ref error-values <>)
delete #f

map find-syntax-error input

36/86

20 Day 10, Puzzle 2: Cleanly close closables

Close unclosed parentheses, keep score of the kind of paren closed, multiplying the
previous by 5 for each new error.

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :26) cut
only (srfi :1) fold

{{{map-over-lines}}}
;; opening paired opening? valid-char? process
{{{paren-tools}}}

define input
map-over-lines : λ (x) x ;; unchanged line, identity

. "advent-of-wisp-code-2021-d10p1-example-input.dat"

define closing-values
'

#\) . 1
#\] . 2
#\} . 3
#\> . 4

define : score numbers
define : add-number number prev

+ number : * 5 prev
fold add-number 0 numbers

define : find-syntax-error line
let loop : (letter-stack '()) (open (string->list line))

cond
: null? open

score : map (cut assoc-ref closing-values <>) letter-stack
: valid-char? letter-stack (car open)

loop : process letter-stack (car open)
cdr open

else #f

pretty-print
let : : res : delete #f : map find-syntax-error input

list-ref (sort res <) : floor/ (length res) 2

37/86

21 Day 11, Puzzle 1: Flashing Octopuses

Every step each number is increased by 1. If it is higher than 9, it flashes, and the up to
8 sourrounding numbers increase by 1, too, also flashing if they become higher than 9.

5483143223
2745854711
5264556173
6141336146
6357385478
4167524645
2176841721
6882881134
4846848554
5283751526

Flashing logic:

;; snippet: {{{flashing-logic}}}
define input

map : λ (x) (map string->number (map string x))
map-over-lines string->list

"advent-of-wisp-code-2021-d11p1-example-input.dat"↪→

define : 1++ arr
. "increase every arr value by 1"
map : λ (x) : map 1+ x

. arr

define : flash-indizes arr
define : flash y

define L : list-ref arr y
map : cut cons y <>

delete #f
map

λ(idx)
let : : num : list-ref L idx

;; 99 means "already flashing"
and {num > 9} {num < 99} idx

iota : length L
apply append : map flash : iota : length arr

define : flash arr

38/86

. "return as values: changed arr and count of flashing"
let reflash : : count 0

define indizes : flash-indizes arr
define : apply-flash index

define y : car index
define x : cdr index
define line : list-ref arr y
define len-line-1 : 1- : length line
define len-arr-1 : 1- : length arr
;; all indizes around the current index
;; but only inside the limits
define around

delete #f
list ;; #f if outside the limits

and {x > 0}
cons {x - 1} y

and {x < len-line-1}
cons {x + 1} y

and {y < len-arr-1}
cons x {y + 1}

and (and {y < len-arr-1} {x > 0})
cons {x - 1} {y + 1}

and (and {y < len-arr-1} {x < len-line-1})
cons {x + 1} {y + 1}

and {y > 0}
cons x {y - 1}

and (and {y > 0} {x > 0})
cons {x - 1} {y - 1}

and (and {y > 0} {x < len-line-1})
cons {x + 1} {y - 1}

for-each
λ : x y

let : : line : list-ref arr y
list-set! line x : 1+ : list-ref line x
list-set! arr y line

map car around
map cdr around

;; 99 means "already flashing"
list-set! line x 99

if : null? indizes
;; use multiple values return as a side-channel
;; to report the number of flashes (as count)
values

map : λ (line) : map (λ (num) (if {num >= 99} 0 num)) line

39/86

. arr
. count

begin
for-each apply-flash indizes
reflash : + count : length indizes

define : step arr
flash : 1++ arr

Put it together:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :26) cut
only (srfi :1) fold first second
only (srfi :11) let-values

{{{map-over-lines}}}
;; input, step
{{{flashing-logic}}}

define flash-counter 0

display
string-join

map : λ (line) : string-join (map number->string line) ""
fold

λ (num prev)
let-values : : (arr count) (step prev)

set! flash-counter {flash-counter + count}
. arr

. input
iota 100

. "\n"
newline
display flash-counter

40/86

22 Day 11, Puzzle 2: Flash together, right now

Find the step where all flashh together.

Use a local return to stop the fold when I find the flashing.

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 control) call/ec ; non-local exit -> return
only (srfi :26) cut
only (srfi :1) fold first second
only (srfi :11) let-values

{{{map-over-lines}}}
;; input, step
{{{flashing-logic}}}

display
string-join

map : λ (line) : string-join (map number->string line) ""
;; introduce a return statement locally
call/ec

λ : return
fold

λ (num prev)
let-values : : (arr count) (step prev)

when : = 0 : apply + : map (λ(x) (apply + x)) arr
return : append arr `((,(+ 1 num)))

. arr
. input
iota 1999

. "\n"

41/86

23 Day 12, Puzzle 1: All the exciting trails

Find all paths through the cave that visit small caves only once.

I enter at start, I exit at end, I’m only allowed to enter uppercase rooms more than
once. These are the edges (the connections) between rooms that give 10 paths:

start-A
start-b
A-c
A-b
b-d
A-end
b-end

And a larger input with 226 paths:

fs-end
he-DX
fs-he
start-DX
pj-DX
end-zg
zg-sl
zg-pj
pj-he
RW-he
fs-DX
pj-RW
zg-RW
start-pj
he-WI
zg-he
pj-fs
start-RW

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :26) cut
only (srfi :1) first second append-map remove

{{{map-over-lines}}}

define input

42/86

map-over-lines
cut string-split <> #\-
. "advent-of-wisp-code-2021-d12p1-example-input-larger.dat"

define : undirected edges
append-map : λ (edge) : list edge (reverse edge)

. edges

define : all-paths edges
let loop : (path '("start")) (edges (undirected edges))

define matching-edges
;; keep the edges that match the first element of the path
filter : λ (edge) : equal? (first edge) (first path)

. edges
define remaining-edges

;; remove edges that match the first element of the path
;; if we’re in a lowercase field, otherwise keep all
if : string-every char-set:upper-case (first path)

. edges
remove : λ (edge) : equal? (first edge) (first path)

. edges
define extended-paths-for-matching

;; create one extended path for each matching edge
map : λ (edge) : cons (second edge) path

. matching-edges
define : process-one extended-path

loop extended-path remaining-edges
cond

: equal? "end" : first path
list : string-join (reverse path) ","

: null? edges
list ;; empty, because we did not reach the end

else
append-map process-one extended-paths-for-matching

pretty-print : length : all-paths input

43/86

24 Day 12, Puzzle 2: Accept boredom just once

Find all paths through the cave that visit small caves only once; except that you may
visit one of them twice.

I enter at start, I exit at end, I’m allowed to enter uppercase rooms more than once.
These are the edges (the connections) between rooms that give 36 paths:

start-A
start-b
A-c
A-b
b-d
A-end
b-end

And a larger input with 3509 paths:

fs-end
he-DX
fs-he
start-DX
pj-DX
end-zg
zg-sl
zg-pj
pj-he
RW-he
fs-DX
pj-RW
zg-RW
start-pj
he-WI
zg-he
pj-fs
start-RW

This looks harmless, but it originally pushed my non-optimized code to its limits and
got my CPU to suffer. It could benefit a lot from a functional dictionary datastructure
instead of a linear-update alist. But still, it’s nice to my memory and already did the
job.

After finishing it, I optimized it to avoid doing work twice, so this now has reasonable
speed.

44/86

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (srfi :26) cut
only (srfi :1) first second append-map remove

{{{map-over-lines}}}

define input
map-over-lines

cut string-split <> #\-
. "advent-of-wisp-code-2021-d12p1-example-input.dat"

define : undirected edges
append-map : λ (edge) : list edge (reverse edge)

. edges

define : lower? str
string-every char-set:lower-case str

define : all-paths edges
let loop : (path '("start")) (edges (undirected edges)) (bored? #f)

define : twice-in-path?
if : member (first path) (cdr path)

. #t #f
define path-head : first path
define start? : equal? path-head "start"
define end? : equal? path-head "end"
define lowercase? : lower? path-head
define boring? : and lowercase? : twice-in-path?
define matching-edges

;; keep the edges that match the first element of the path
filter : λ (edge) : equal? path-head : first edge

. edges
define remaining-edges

;; remove edges that match the first element of the path
;; if we’re in a lowercase field, otherwise keep all
cond

boring? ;; remove the current edge and all lowercase path
elements↪→

let : : lowercase-path-elements : filter lower? path
remove : λ (edge) : member (first edge)

lowercase-path-elements↪→

. edges
: or start? : and bored? lowercase?

45/86

remove : λ (edge) : equal? path-head : first edge
. edges

else edges ;; keep all
define extended-paths-for-matching

;; create one extended path for each matching edge
map : λ (edge) : cons (second edge) path

. matching-edges
define : process-one extended-path

loop extended-path remaining-edges : or bored? boring?
cond

end?
list : string-join (reverse path) ","

: null? edges
list ;; empty, because we did not reach the end

: and start? : not : null? : cdr path
list ;; empty, because revisiting start is forbidden

else
append-map process-one extended-paths-for-matching

pretty-print : length : all-paths input

Profiling this, gives the expected results: remove, string-every and lower? are the
most expensive actions, since they are the inner loops. To profile it, just copy it into a
wisp shell and then run:

,profile pretty-print : length : all-paths input .

The output with profile looks like this:

3509
% cumulative self
time seconds seconds procedure
26.47 0.16 0.16 string-every-c-code
14.71 0.16 0.09 remove
14.71 0.11 0.09 lower?
11.76 0.07 0.07 <current input>:50:39
8.82 0.62 0.05 <current input>:31:38:loop
8.82 0.07 0.05 <current input>:71:0
2.94 0.38 0.02 filter
2.94 0.02 0.02 car
2.94 0.02 0.02 %after-gc-thunk
2.94 0.02 0.02 string-join
2.94 0.02 0.02 procedure?
0.00 15.13 0.00 srfi/srfi-1.scm:584:5:map1

46/86

0.00 5.55 0.00 srfi/srfi-1.scm:672:0:append-map
0.00 0.62 0.00 anon #x1752678
0.00 0.02 0.00 anon #xe3d160
0.00 0.02 0.00 ice-9/boot-9.scm:340:2:string-every

Sample count: 34
Total time: 0.621091946 seconds (0.093273494 seconds in GC)

Since string-every, remove and lower? already have 0.34s — more than half the runtime
— I won’t optimize further. A better datastructure could get rid of most of the cost of
remove, and the lower? could be cached to save another 10% of the runtime, for example
like this:

define lower?
let : : cache '()

lambda (str)
let : : cached : assoc str cache

if cached
cdr cached
let : : res : string-every char-set:lower-case str

set! cache : cons (cons str res) cache
. res

See, now I did optimize further, but I’ll stop here :-)

Have fun!

47/86

25 Day 13, Puzzle 1: Fold your password

Mirror points over a given axis.

6,10
0,14
9,10
0,3
10,4
4,11
6,0
6,12
4,1
0,13
10,12
3,4
3,0
8,4
1,10
2,14
8,10
9,0

fold along y=7
fold along x=5

Here I need to read two fields. I realize that with a modification of map-over-lines:

;; snippet: {{{map-over-lines-port}}}: an alternate map-over-lines
;; that takes a port and a terminator, so multiple fields can be read
import : only (ice-9 rdelim) read-line

only (srfi :26) cut
only (ice-9 optargs) define*

define* : map-over-lines/port fun port #:key (terminator eof-object?)
define terminator?

if : or (procedure? terminator) (macro? terminator)
. terminator
cut equal? terminator <>

let loop : (lines '()) (line (read-line port))
if : terminator? line

begin : reverse! lines
loop : cons (fun line) lines

read-line port

48/86

Also I need to draw coordinates on the commandline:

;; snippet: {{{draw-coordinates}}}
define : draw coordinates

define xs : map first coordinates
define ys : map second coordinates
define len-x

+ 1 : apply max xs
define len-y

+ 1 : apply max ys
define pane

let loop : (res '()) (rest-y len-y)
if : zero? rest-y

. res
loop : cons (make-list len-x #\.) res

- rest-y 1
for-each : λ (x y) : list-set! (list-ref pane y) x #\#

. xs ys
string-join

map : λ (sublist) : apply string sublist
. pane

. "\n"

And I need to read the coordinates and instructions and apply instructions:

;; snippet: {{{coordinates-and-instructions}}}
define-values : coordinates instructions

let : : port : open-input-file
"advent-of-wisp-code-2021-d13p1-example-input.dat"↪→

define coordinates
map-over-lines/port

λ (line) : map string->number : string-split line #\,
. port
. #:terminator "" ;; split by empty line

define instructions
map-over-lines/port

cut string-split <> #\=
. port

values coordinates instructions

define : apply-instruction coordinates instruction
define instruction-value : string->number : second instruction
define is-y : equal? "fold along y" : first instruction
define : process-one coordinate

49/86

define val : if is-y (second coordinate) (first coordinate)
define new-val

if {val < instruction-value} val
- {instruction-value * 2} val

if is-y
list (first coordinate) new-val
list new-val (second coordinate)

map process-one coordinates

Finally: actually apply one instruction, and draw the coordinates:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut
only (srfi :1) first second append-map remove

{{{map-over-lines-port}}}
{{{draw-coordinates}}}
{{{coordinates-and-instructions}}}

display
string-count : draw : apply-instruction coordinates : car

instructions↪→

. #\#

I did too much when solving this: I directly implemented folding to the end, because I
did not read the final paragraph carefully enough.

I took that additional part out again for the code above. It’s in the code for part 2.

50/86

26 Day 13, Puzzle 2: Fold your password

Complete folding, then use the letters as result (in the example: O). The only changees
are creating folded by let-recursion over the instructions and printing the drawing instead
of the count.

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut
only (srfi :1) first second append-map remove

{{{map-over-lines-port}}}
{{{draw-coordinates}}}
{{{coordinates-and-instructions}}}

define folded
let loop : (coords coordinates) (instrs instructions)

if : null? instrs
. coords
loop : apply-instruction coords : car instrs

cdr instrs

display : draw folded

And since it just calls for it, let’s follow Scheme tradition and implement map-over-lines
on top of map-over-lines/port:

{{{map-over-lines-port}}}
define : map-over-lines fun filename

define port : open-input-file filename
define lines : map-over-lines/port fun port
close port
. lines

This closes the port explicitly. Without that, closing is delayed until garbage-collection
which could exhaust file descriptors if I open many files in a very short time.

51/86

27 Day 14, Puzzle 1: Polymer-synthesis

Insert characters inside matching pairs.

The first line is the initial sequence. A second block gives a lookup table: insert the
character in the middle of matching pairs.

NNCB

CH -> B
HH -> N
CB -> H
NH -> C
HB -> C
HC -> B
HN -> C
NN -> C
BH -> H
NC -> B
NB -> B
BN -> B
BB -> N
BC -> B
CC -> N
CN -> C

import : only (srfi :1) take first second fold
only (ice-9 string-fun) string-replace-substring

{{{map-over-lines-port}}}

define input
let : : port : open-input-file

"advent-of-wisp-code-2021-d14p1-example-input.dat"↪→

define init
first : map-over-lines/port string->list port #:terminator ""

define : split-line line
define key-value

string-split : string-replace-substring line " -> " ";"
. #\;

cons : string->list : first key-value
first : string->list : second key-value

define rules
map-over-lines/port split-line port

list init rules

52/86

define : apply-rule left right prev rules
define matching : assoc (list left right) rules
define prev-with-match

if matching : cons (cdr matching) prev
. prev

cons right prev-with-match

define : apply-rules letters rules
reverse!

fold (cut apply-rule <> <> <> rules)
take letters 1 ;; initial value: first letter
. letters ;; left letters in pairs
cdr letters ;; shifted => right right letters

define : apply-rules-n-times N letters rules
let loop : (N N) (letters letters)

if : zero? N
. letters
loop {N - 1}

apply-rules letters rules

define result-string
apply string

apply-rules-n-times 10 (first input) (second input)

define all-possible-letters
let : : with-duplicates : append (first input) : map cdr (second

input)↪→

;; hack: use char-set conversion to remove duplicates
char-set->list

list->char-set with-duplicates

define occurrences
map (cut string-count result-string <>) all-possible-letters

let
: maxOcc : apply max occurrences

minOcc : apply min occurrences
display {maxOcc - minOcc}

This is pretty slow. At 20 steps it takes two seconds to calculate 3 million elements and
at 22 steps it’s already at 6 seconds for 12 million elements.

The second part needs 40 steps. I must change the approach.

53/86

Also I’m still kind of annoyed that reading the input usually takes a too large fraction
of the total code. I have the feeling that some primitives are too low level in Scheme —
need to fix that.

Consequence: I just wrote string-split-substring and if/once the tests pass, I’ll
submit it to Guile to ease the pain and use it in the next step.

54/86

28 Day 14, Puzzle 2: predict the element disbalance

The answer actually only needs the counts of letters, so why should I actually synthesize
the polymer-string? Just having letter-bigrams with their counts should avoid the
algorithmic explosion.

But first let’s simplify the string input:

;; snippet: {{{string-split-substring}}}
define : string-split-substring str substring

if : equal? substring ""
map string : string->list str ;; split each letter
let : : sublen : string-length substring

let lp : (start 0) (res '())
cond
(string-contains str substring start) =>

λ : end
lp (+ end sublen) (cons (substring/shared str start

end) res)↪→

else
reverse! : cons (substring/shared str start) res

This allows to simplify reading the input a bit:

;; before
define key-value

string-split : string-replace-substring line " -> " ";"
. #\;

;; after
define key-value

string-split-substring line " -> "

To fix the algorithmic explosion, I’ll just not generate the polymer: since nature already
does it, why should I do it myself when all I need are the resulting statistics? :-)

The simplest option is to use hash-maps and global mutation.

import : only (srfi :1) take first second third fold drop-right
only (ice-9 string-fun) string-replace-substring
only (srfi :26) cut

{{{map-over-lines-port}}}
{{{string-split-substring}}}

define letters : make-hash-table

55/86

define : letters-inc! key value
hash-set! letters key : + value : or (hash-ref letters key) 0

define pairs : make-hash-table
define : pairs-inc! key value

hash-set! pairs key : + value : or (hash-ref pairs key) 0
define : pairs-dec! key value

pairs-inc! key : - value

define input
let : : port : open-input-file

"advent-of-wisp-code-2021-d14p1-example-input.dat"↪→

;; get the letters as before
define init

first : map-over-lines/port string->list port #:terminator ""
;; get the rules as before
define : split-line line

define key-value
string-split-substring line " -> "

cons : string->list : first key-value
first : string->list : second key-value

define rules
map-over-lines/port split-line port

;; split the letters into pairs
define init-pairs

map cons
drop-right init 1
cdr init

;; track letters and pairs in the global hash-maps
for-each (cut letters-inc! <> 1) init
for-each (cut pairs-inc! <> 1) init-pairs
. rules

define : apply-rule left right weight rules
define pair : cons left right
define matching : assoc (list left right) rules
when matching

let : : middle : cdr matching
pairs-dec! pair weight
pairs-inc! (cons left middle) weight
pairs-inc! (cons middle right) weight
letters-inc! middle weight

56/86

define : apply-rules rules
;; get the items to fold over (avoid mutation while folding)
define letters-and-weights

hash-map->list : lambda (key value) : list (car key) (cdr key) value
. pairs

for-each (cut apply-rule <> <> <> rules)
map first letters-and-weights ;; first
map second letters-and-weights ;; second
map third letters-and-weights ;; weight

define : apply-rules-n-times N rules
;; simplified: no need for return values
for-each : λ(x) : apply-rules rules

iota N

apply-rules-n-times 40 input

define occurrences
hash-map->list : λ(key value) value

. letters
let

: maxOcc : apply max occurrences
minOcc : apply min occurrences

display {maxOcc - minOcc}

This now solves my speed problems: It takes 7 seconds for 10k steps. The version from
part 1 could only do 22 steps in that time.

57/86

29 Day 15, Puzzle 1: Path planning

Now we’re getting serious. Find the path with the lowest aggregated cost of fields to
enter. I need the globally best path, so the obvious choice is Dijkstra’s algorithm.

1163751742
1381373672
2136511328
3694931569
7463417111
1319128137
1359912421
3125421639
1293138521
2311944581

For Dijkstra I need a set of unvisited nodes and a set of visited nodes. For simplicity
I’ll start with plain lists of lists, the most direct translation of the task, though that will
not scale, so I will likely have to change to a better datastructure in part 2.

The datastructure is a simple list of lists, defined by its accessors xy-ref and xy-set!:

;;; snippet: {{{p15-xy-ref-and-set}}}
define : xy-ref arr x y

list-ref : list-ref arr y
. x

define : xy-set! arr x y val
list-set! : list-ref arr y

. x val

In this naive approach, calculating the neighbors just looks around in the datastructure.

;;; snippet: {{{d15-neighbors}}}
define : neighbors x y

define dpos
' (-1 0) (0 -1) (+1 0) (0 +1)

delete #f
map

λ : dx dy
let : (xx {x + dx}) (yy {y + dy})

and {xx >= 0} {xx < len-x} {yy >= 0} {yy < len-y}
pos {x + dx} {y + dy}

map first dpos
map second dpos

58/86

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Positions are tracked as records with x and y and distances use a simple xy-structure:

;;; snippet: {{{d15-position-handling}}}
define-record-type <pos>

pos x y
. pos?
x pos-x
y pos-y

;; Distances check x and y in a distances map:
define : distance node

xy-ref distances (pos-x node) (pos-y node)
define : distance-<? A B

<
distance A
distance B

define : calculate-distance node current-distance
define X : pos-x node
define Y : pos-y node
define path-cost : xy-ref input X Y
define known-distance : xy-ref distances X Y
min known-distance {current-distance + path-cost}

Finding the closest node just iterates over all positions and keeps the unvisited one with
the shortest distance.

;; snippet: {{{d15-closest-unvisited-simple}}}
define : find-closest-unvisited-node

define len-x-1 {len-x - 1}
define len-y-1 {len-y - 1}
let loop : (x 0) (y 0) (closest-x 0) (closest-y 0) (closest-dist

(inf))↪→

define dist : distance : pos x y
define unvisited : not : xy-ref visited x y
if : and unvisited {dist < closest-dist}

loop x y x y dist
cond

: and {len-x-1 <= x} {len-y-1 <= y}
if unvisited

pos closest-x closest-y
. #f

{len-x-1 <= x}
loop 0 {y + 1} closest-x closest-y closest-dist

else : loop {x + 1} y closest-x closest-y closest-dist

59/86

And processing one node just means calculating and setting the distances of all its not
yet visited neighbors:

;; snippet: {{{d15-visit-current-node-simple}}}
define : visit-current-node

define neigh ;; all unvisited neighbors
remove : λ (node) : xy-ref visited (pos-x node) (pos-y node)

neighbors (pos-x current-node) (pos-y current-node)
define current-distance

xy-ref distances (pos-x current-node) (pos-y current-node)
for-each

λ : node
. #f
xy-set! distances

pos-x node
pos-y node
calculate-distance node current-distance

. neigh
xy-set! visited (pos-x current-node) (pos-y current-node) #t
and=> (find-closest-unvisited-node) : cut set! current-node <>

To put it all together:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut
only (srfi :9) define-record-type
only (srfi :1) first second append-map remove

{{{map-over-lines}}}
{{{string-split-substring}}}

;; use the new string-split-substring function
define : line->numbers line

map string->number : string-split-substring line ""

define input
map-over-lines line->numbers

"advent-of-wisp-code-2021-d15p1-example-input.dat"↪→

define len-y : length input
define len-x : length (list-ref input 0)

60/86

{{{p15-xy-ref-and-set}}}

define visited
map : λ(y) : map (λ(x) #f) : iota len-x

iota len-y
define distances

map : λ(y) : map (λ(x) (inf)) : iota len-x
iota len-y

;; init the risk of the first node as 0
xy-set! distances 0 0 0

{{{d15-position-handling}}}
{{{d15-neighbors}}}

define initial-node : pos 0 0
define target-node : pos {len-x - 1} {len-y - 1}
define current-node initial-node

{{{d15-closest-unvisited-simple}}}

{{{d15-visit-current-node-simple}}}

while : visit-current-node
. #f

;; Now the cost of all shortest paths to all nodes is known.
;; The lowest total risk is just the distance to the target
pretty-print : distance target-node

That finished with the real input in less than one minute despite the sub-par datastruc-
tures used here.

61/86

30 Day 15, Puzzle 2: Larger path planning

As expected, the second task has a larger map. More exactly: a 25x larger map.

I need better datastructures. But the first step is profiling:

;; add here all the code before calling visit-current-node with the real
code↪→

,profile while (visit-current-node) #f

% cumulative self
time seconds seconds procedure
71.06 27.98 27.98 list-ref
13.18 39.19 5.19 find-closest-unvisited-node
6.16 2.43 2.43 distance
5.95 15.86 2.34 xy-ref
3.38 1.33 1.33 %after-gc-thunk
0.09 39.35 0.03 visit-current-node
0.04 39.38 0.02 anon #x18f2be8
0.04 0.02 0.02 <current input>:82:0
0.04 0.02 0.02 xy-set!
0.04 0.02 0.02 ice-9/boot-9.scm:812:0:and=>
0.00 1.33 0.00 anon #xf88160
0.00 0.07 0.00 ice-9/boot-9.scm:253:2:for-each
0.00 0.07 0.00 <current input>:112:0
0.00 0.02 0.00 remove
0.00 0.02 0.00 neighbors
0.00 0.02 0.00 ice-9/boot-9.scm:230:5:map2

The culprits are obvious: list-ref and find-closest-unvisited-node.

The reason is clear: list-ref on the linked lists scales linearly: O(N). Once it is taken out,
the next target for optimization is find-closest-unvisited-node: it currently looks
at all nodes, so it also scales at best in the number of list-access: O(N) * list-ref.
Since it is needed once per node in Dijkstra, the total algorithmic cost of this naive
implementation is at least cubic:

O(N) * find-closest-unvisited-node * list-ref ~ O(N³)

But first: let’s check whether just switching to a vector is enough. With 25x the nodes,
quadratic scaling would mean 625x the runtime. Vectors already reduce the runtime for
the unchanged input to 17s, so this could finish in 3 hours.

Change: Use 25x the nodes:

;;;snippet: {{{d15p2-5x-input}}}

62/86

define : inc number
let : : num {number + 1}

if {num > 9} 1 num
define : inc-list L

map inc L

define : 5x-line line
define nextline line
let loop : (n 4) (line line)

set! nextline : map inc nextline
if : zero? n

. line
loop {n - 1} : append line nextline

define : 5x-arr arr
define nextarr arr
let loop : (n 4) (arr arr)

set! nextarr : map inc-list nextarr
if : zero? n

. arr
loop {n - 1} : append arr nextarr

;; 5x each line
set! input : map 5x-line input
;; 5x the input, in lazy mode
set! input : 5x-arr input

Change: Use a vector. Change the data to vectors and adjust xy-ref and xy-set!.

;; snippet: {{{d15p2-move-to-vector}}}
;; move to a vector
set! input

list->vector : map list->vector input

define : xy-ref arr x y
vector-ref : vector-ref arr y

. x
define : xy-set! arr x y val

vector-set! : vector-ref arr y
. x val

;; move to a vector
define visited
list->vector
map : λ(y) : list->vector : map (λ(x) #f) : iota len-x

iota len-y

63/86

define distances
list->vector
map : λ(y) : list->vector : map (λ(x) (inf)) : iota len-x

iota len-y

That’s all the changes: the other snippets stay the same. Putting it all together (re-using
snippets from part 1):

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut
only (srfi :9) define-record-type
only (srfi :1) first second append-map remove

{{{map-over-lines}}}
{{{string-split-substring}}}

define : line->numbers line
map string->number : string-split-substring line ""

define input
map-over-lines line->numbers

"advent-of-wisp-code-2021-d15p1-example-input.dat"↪→

;; change: use 5x the input
{{{d15p2-5x-input}}}

define len-y : length input
define len-x : length (list-ref input 0)

;; change: use a vector instead of a list
{{{d15p2-move-to-vector}}}

;; init the risk of the first node as 0
xy-set! distances 0 0 0

{{{d15-position-handling}}}
{{{d15-neighbors}}}

define initial-node : pos 0 0
define target-node : pos {len-x - 1} {len-y - 1}
define current-node initial-node

{{{d15-closest-unvisited-simple}}}

64/86

{{{d15-visit-current-node-simple}}}

while : visit-current-node
. #f

;; Now the cost of all shortest paths to all nodes is known.
;; The lowest total risk is just the distance to the target
pretty-print : distance target-node

Yes, it works. Slow, but fast enough to finish. That’s the power of just switching out
the basic datastructure for one that’s better suited for the task. Don’t use a linked list,
if you want to access elements at arbitrary positions by index.

With this, the task is done, but not yet done well.

30.1 Simple Priority Queue

The next step is changing find-closest-unvisited-node to use a priority queue.

I’ll have to implement a Fibonacci heap — or one of the other priority queues with
sufficient scaling.

Likely I should try a Strict Fibonacci heap for the best scaling (Brodal, Gerth Stølting;
Lagogiannis, George; Tarjan, Robert E., 2012), or one of the queues with best empirical
results (Daniel H. Larkin, Siddhartha Sen, Robert E. Tarjan, 2014).

But that requires thinking in trees, so let’s make the simplest priority queue instead.
The scaling will not suffice for hard challenges, but it should suffice for this Dijkstra —
and keep it simple. The data holder is a plain list for starters and ordering is done by
simply sorting after every insert and searching the list linearly when decreasing, because
there a value has to be moved.

The algorithm uses a slowly moving front of open nodes of roughly O(sqrt N) size, and
it kind of follows the natural ordering of the elements, so the scaling of the priority queue
for the task at hand may actually be O(sqrt N).

;; snippet {{{priority-queue}}}
import : only (ice-9 pretty-print) pretty-print

only (srfi :9) define-record-type
only (srfi :1) take

define-record-type <queue-item>
queue-item priority value
. queue-item?
priority queue-item-priority queue-item-priority-set!

65/86

https://en.wikipedia.org/wiki/Fibonacci_heap#Summary_of_running_times
https://en.wikipedia.org/wiki/Fibonacci_heap#Summary_of_running_times
https://www.cs.au.dk/~gerth/papers/stoc12.pdf
https://www.cs.au.dk/~gerth/papers/stoc12.pdf
https://arxiv.org/abs/1403.0252

value queue-item-value

define : make-priority-queue
. '() ;; plain linked list

define : pq-find-min q
if : null? q

. #f
queue-item-value : car q

define pq-delete-min cdr
define : pq-sort q

sort q : λ (a b) : < (queue-item-priority a) (queue-item-priority b)
define : pq-insert q q-item

and=> (cons q-item q) pq-sort
define : pq-decrease q priority q-item-value

. "This has linear time: O(N).

For a proper priority queue it should have O(log n) or O(1)."
let loop : (item (car q)) (before '()) (after '()) (rest (cdr q))

cond
: equal? q-item-value : queue-item-value item

;; use mutating functions (!) for efficiency
append!

reverse! before
cons : queue-item priority q-item-value

reverse! after
. rest

: null? rest
error "item not found in q:" q-item-value : take q 10

;; the <= is required to have stable sorting.
{ (queue-item-priority item) <= priority }

loop : car rest
cons item before
. after
cdr rest

else
loop : car rest

. before
cons item after
cdr rest

Now I use the priority queue to track the unvisited nodes and get the closest one:

;; snippet {{{priority-queue-usage-unvisited}}}
;; priority-queue: unvisited (this should decrease the cost)

66/86

define unvisited
append-map

λ (x)
map

λ (y) : queue-item (inf) : pos x y
iota len-y

iota len-x

;; With the priority queue, this is down to a single line.
define : find-closest-unvisited-node

pq-find-min unvisited

Processing the current node not only sets the by position, but also changes the distance
inside the priority queue and takes the next node to process from it:

;; snippet {{{priority-queue-usage-visit-current-node}}}
define : visit-current-node

define neigh ;; all unvisited neighbors
remove : λ (node) : xy-ref visited (pos-x node) (pos-y node)

neighbors (pos-x current-node) (pos-y current-node)
define current-distance

xy-ref distances (pos-x current-node) (pos-y current-node)
for-each

λ : node
let : : d : calculate-distance node current-distance

set! unvisited : pq-decrease unvisited d node
xy-set! distances

pos-x node
pos-y node
. d

. neigh
xy-set! visited (pos-x current-node) (pos-y current-node) #t
;; delete the current-node
set! unvisited : pq-delete-min unvisited
and=> (find-closest-unvisited-node) : cut set! current-node <>

Putting the full Dijkstra together again, now with the priority queue:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut

67/86

only (srfi :9) define-record-type
only (srfi :1) first second append-map remove take

{{{map-over-lines}}}
{{{string-split-substring}}}
{{{priority-queue}}}

define : line->numbers line
map string->number : string-split-substring line ""

define input
map-over-lines line->numbers

"advent-of-wisp-code-2021-d15p1-example-input.dat"↪→

{{{d15p2-5x-input}}}

define len-y : length input
define len-x : length (list-ref input 0)

{{{d15p2-move-to-vector}}}

;; init the risk of the first node as 0
xy-set! distances 0 0 0

{{{d15-position-handling}}}

{{{d15-neighbors}}}

define initial-node : pos 0 0
define target-node : pos {len-x - 1} {len-y - 1}
define current-node initial-node

{{{priority-queue-usage-unvisited}}}
set! unvisited : pq-decrease unvisited 0 : pos 0 0

{{{priority-queue-usage-visit-current-node}}}

define : cost-to-target
while : visit-current-node

. #f
distance target-node

;; Now the cost of all shortest paths to all nodes is known.
;; The lowest total risk is just the distance to the target

68/86

pretty-print : cost-to-target

Using this trivial priority queue, we’re down from 2h with the naive search on the raw
map-data to 11 minutes. The algorithmic cost is dominated by pq-decrease, so using a
better priority-queue could decrease the cost a lot:

,profile cost-to-target .
% cumulative self
time seconds seconds procedure
81.49 883.98 734.70 pq-decrease
6.49 58.50 58.50 %after-gc-thunk
6.45 58.11 58.11 reverse!
3.63 32.70 32.70 equal?
1.73 15.58 15.56 append!
0.03 900.08 0.30 <current input>:185:0
0.03 0.28 0.28 <current input>:203:8
0.03 0.24 0.24 xy-ref
0.02 901.51 0.19 visit-current-node
0.02 0.15 0.15 <current input>:160:0
0.01 0.13 0.13 xy-set!
0.01 0.56 0.11 neighbors
0.01 0.54 0.11 ice-9/boot-9.scm:230:5:map2
0.01 0.09 0.09 min
0.01 900.25 0.06 ice-9/boot-9.scm:253:2:for-each
0.01 0.06 0.06 cadr
0.00 0.26 0.04 ice-9/boot-9.scm:220:5:map1
0.00 0.04 0.04 pq-delete-min

30.2 Purely Functional Priority Search Queue

Redefining the priority queue with the Priority Search Queue from the Purely Functional
Data Structures should give us much better performance. Let’s try that:

;; snippet {{{priority-queue-pfds}}}
import : only (ice-9 pretty-print) pretty-print

only (srfi :26) cut
only (srfi :9) define-record-type
only (srfi :1) take
pfds psqs ;; Priority Search Queue

define-record-type <queue-item>
queue-item priority value
. queue-item?
priority queue-item-priority queue-item-priority-set!

69/86

https://github.com/ijp/pfds
https://github.com/ijp/pfds

value queue-item-value
;; the position comparator defines the traversal order
define : pos-<? p0 p1

define x0 : pos-x p0
define y0 : pos-y p0
define x1 : pos-x p1
define y1 : pos-y p1
if {x0 = x1} {y0 < y1} {x0 < x1}

define : make-priority-queue
make-psq pos-<? <

define pq-find-min psq-min
define pq-delete-min psq-delete-min
define pq-delete psq-delete
define pq-insert psq-set
define : pq-decrease q priority q-item-value

psq-update q q-item-value
λ (prio) : min priority prio
. priority

We’ll have to adjust the creation of the unvisited node queue:

;; snippet {{{priority-queue-usage-unvisited-pfds}}}
;; priority-queue: unvisited (this should decrease the cost)
define unvisited

fold : λ (next previous) : pq-insert previous next : inf
make-priority-queue
append-map

λ (x)
map

λ (y) : pos x y
iota len-y

iota len-x
;; With the priority queue, this is down to a single line.
define : find-closest-unvisited-node

and
not : psq-empty? unvisited
pq-find-min unvisited

And delete the minimum node before adjusting other nodes to avoid an infinite loop:

;; snippet {{{priority-queue-usage-visit-current-node-pfds}}}
define : visit-current-node

70/86

define neigh ;; all unvisited neighbors
remove : λ (node) : xy-ref visited (pos-x node) (pos-y node)

neighbors (pos-x current-node) (pos-y current-node)

define current-distance
xy-ref distances (pos-x current-node) (pos-y current-node)

;; delete the current-node from unvisited
set! unvisited : pq-delete-min unvisited

for-each
λ : node

let : : d : calculate-distance node current-distance
set! unvisited : pq-decrease unvisited d node
xy-set! distances

pos-x node
pos-y node
. d

. neigh

xy-set! visited (pos-x current-node) (pos-y current-node) #t
and=> (find-closest-unvisited-node) : cut set! current-node <>

But overall the changes are pretty minor:

import : only (ice-9 rdelim) read-line
only (ice-9 pretty-print) pretty-print
only (ice-9 optargs) define*
only (srfi :26) cut
only (srfi :9) define-record-type
only (srfi :1) first second append-map remove take fold
pfds psqs ;; Priority Search Queue

{{{map-over-lines}}}
{{{string-split-substring}}}

define : line->numbers line
map string->number : string-split-substring line ""

define input
map-over-lines line->numbers

"advent-of-wisp-code-2021-d15p1-example-input.dat"↪→

71/86

{{{d15p2-5x-input}}}

define len-y : length input
define len-x : length (list-ref input 0)

{{{d15p2-move-to-vector}}}

;; init the risk of the first node as 0
xy-set! distances 0 0 0

{{{d15-position-handling}}}

{{{priority-queue-pfds}}}
{{{priority-queue-usage-unvisited-pfds}}}
{{{d15-neighbors}}}

define initial-node : pos 0 0
define target-node : pos {len-x - 1} {len-y - 1}
define current-node initial-node

set! unvisited : pq-decrease unvisited 0 : pos 0 0

{{{priority-queue-usage-visit-current-node-pfds}}}

define : cost-to-target
while : visit-current-node

. #t
distance target-node

;; Now the cost of all shortest paths to all nodes is known.
;; The lowest total risk is just the distance to the target
pretty-print : cost-to-target

This code now takes only 10 seconds for completion instead of 8 minutes.

The difference of the previous version compared to the earlier results are due to faster
hardware.

wisp@(guile-user)> ,profile cost-to-target
...
...

% cumulative self
time seconds seconds procedure
29.36 4.10 4.10 struct-ref

72/86

15.65 4.08 2.19 ice-9/boot-9.scm:1211:8
14.46 6.33 2.02 rnrs/records/procedural.scm:141:6
5.37 1.89 0.75 ice-9/boot-9.scm:978:0:record-type-parents
4.32 0.75 0.60 ice-9/boot-9.scm:1169:19
4.17 0.71 0.58 pfds/psqs.sls:235:0:update
3.28 7.37 0.46 pfds/psqs.sls:149:0:play-match
2.68 2.69 0.37 pfds/psqs.sls:359:0:balance
2.53 0.35 0.35 <
2.24 0.31 0.31 %after-gc-thunk

...

Sample count: 671
Total time: 13.97066953 seconds (4.1994665 seconds in GC)

I cannot fix struct-ref, so I finally consider this task done. Though it is now 30 months
after my first try.

73/86

31 Day 16, Puzzle 1: Read Elf Transmission

After diving into the deep end, we get back to fundamentals: parsing bitstreams repre-
sented in hexadecimal.

Example packets:

D2FE28
EE00D40C823060
8A004A801A8002F478
620080001611562C8802118E34
C0015000016115A2E0802F182340
A0016C880162017C3686B18A3D4780

Let’s do that test-driven. Start with the test-setup:

import : srfi :1 lists
srfi :26 cut
srfi :60 integers-as-bits
srfi :64 tests
only (srfi :11) let-values
only (ice-9 match) match-let ;; pattern matching

;; implementations that will be tested
{{{d16-parse-hexadecimal}}}
{{{d16-parse-literal-packets}}}
{{{d16-parse-operator-packets}}}

test-begin "elf-messages"

{{{d16-parse-hexadecimal--tests}}}
{{{d16-parse-literal-packets--tests}}}
{{{d16-parse-operator-packets--tests}}}

{{{d16-input-data-test}}}

test-end

See test results:

cat "elf-messages.log"

First we need to parse Hexadecimal into binary:

74/86

;; snippet: {{{d16-parse-hexadecimal--tests}}}
test-equal #*110100101111111000101000

hexadecimal->bits "D2FE28"
test-equal

. #*0000000100100011010001010110011110001001101010111100110111101111
hexadecimal->bits "0123456789abcdef"

;; snippet: {{{d16-parse-hexadecimal}}}
define : hexadecimal->bits hex

. "Turn hexadecimal string into a bitvector"
apply bitvector ;; turn bits into efficient bitarray

append-map (cut integer->list <> 4) ;; represent as bits
map (cut string->number <> 16) ;; parse as hexadecimal

map string ;; turn back to one-element strings
string->list hex ;; split into characters

Then we parse literal packets (direct data):

;; snippet: {{{d16-parse-literal-packets--tests}}}
test-equal '(6 . 4)

identify-packet #*110100101111111000101000
test-equal 2021

literal-value-packet-data #*110100101111111000101000

;; snippet: {{{d16-parse-literal-packets}}}
define : bitvector->integer vec

list->integer
bitvector->list vec

define : identify-packet packet
. "Return (version . type) for the PACKET."
define version : bitvector->integer : bitvector-copy packet 0 3
define type : bitvector->integer : bitvector-copy packet 3 6
cons version type

define : bitvectors->integer . packets
. "Flatten subvectors and re-interpret the bits as integer"
list->integer : apply append : map bitvector->list packets

define* : literal-value-packet-data packet #:key (start 6)
. "Return values: data as integer and index after the last bit."
let loop : (nibbles '()) (index start)

75/86

define nibble : bitvector-copy packet {index + 1} {index + 5}
define value : cons nibble nibbles
if : not : bitvector-bit-set? packet index

values : apply bitvectors->integer : reverse! value
+ index 5

loop value {index + 5}

Now we parse operator packets (packets containing packets) and extract versions:

;; snippet: {{{d16-parse-operator-packets--tests}}}
;; packet types other than 4 are detected
test-equal '(1 . 6) ;; 6 means operator type

identify-packet
hexadecimal->bits "38006F45291200"

;; operator length type bitcount and packet number are detected
test-equal 15

operator-length-bitlength
hexadecimal->bits "38006F45291200"

test-equal 11
operator-length-bitlength

hexadecimal->bits "EE00D40C823060"
;; parses packet versions
test-equal '(1 6 2)

extract-packet-versions
hexadecimal->bits "38006F45291200"

test-equal '(7 2 4 1)
extract-packet-versions

hexadecimal->bits "EE00D40C823060"
;; gives correct version sums
test-equal 16

apply + ;; apply + calculates the sum of the values in a list
extract-packet-versions

hexadecimal->bits "8A004A801A8002F478"
test-equal 12

apply +
extract-packet-versions

hexadecimal->bits "620080001611562C8802118E34"
test-equal 23

apply +
extract-packet-versions

hexadecimal->bits "C0015000016115A2E0802F182340"
test-equal 31

apply +
extract-packet-versions

76/86

hexadecimal->bits "A0016C880162017C3686B18A3D4780"

;; snippet: {{{d16-parse-operator-packets}}}
define : operator-length-bitlength packet

if : bitvector-bit-set? packet 6
. 11 15

define* : extract-packet-versions packet #:optional max-packets
. "Extract the version numbers of all packets as flat list."
define : done start-index

. "check whether enough bits remain for the minimum packet"
define min-bits {6 + 5} ;; header plus one literal data nibble
> {start-index + min-bits} : bitvector-length packet

match-let : : (version . type) : identify-packet packet
;; no more packets to parse or not enough bits for a packet
if : or (and=> max-packets zero?) : done 0

. '() ;; rest of the packet is only padding
cons version
cond

: equal? 4 type ;; literal value
let-values

: (data after-end) : literal-value-packet-data packet
if (done after-end) '()

extract-packet-versions
bitvector-copy packet after-end

else ;; operator packet that can have sub-packets
let*

: len-bits : operator-length-bitlength packet
data-start : + 6 1 len-bits
subvec : bitvector-copy packet 7 data-start
len : list->integer : bitvector->list subvec

if : = 15 len-bits
;; fixed length, arbitrary number of packets
append

;; extract packets from packet-body
extract-packet-versions

bitvector-copy packet data-start
+ data-start len

;; extract further packets after the packet body
if

or : equal? max-packets 1
done : + data-start len

. '()
extract-packet-versions

77/86

bitvector-copy packet : + data-start len
and=> max-packets 1-

;; unknown length, fixed num of packets: keep parsing
extract-packet-versions

bitvector-copy packet data-start
. len

Finally we check whether the actual input is parsed correctly:

;; snippet: {{{d16-input-data-test}}}
;; my input gives the correct version sum
test-equal 993

apply +
extract-packet-versions

hexadecimal->bits
string-append "420D5A802122FD25C8CD7CC010B00564D0E4B76C7D5A"

. "59C8C014E007325F116C958F2C7D31EB4EDF90A9803B2EB5340924"

. "CA002761803317E2B4793006E28C2286440087C5682312D0024B9E"

. "F464DF37EFA0CD031802FA00B4B7ED2D6BD2109485E3F3791FDEB3"

. "AF0D8802A899E49370012A926A9F8193801531C84F5F573004F803"

. "571006A2C46B8280008645C8B91924AD3753002E512400CC170038"

. "400A002BCD80A445002440082021DD807C0201C510066670035C00"

. "940125D803E170030400B7003C0018660034E6F180120104257588"

. "0A5004D9372A520E735C876FD2C3008274D24CDE614A68626D9480"

. "4D4929693F003531006A1A47C85000084C4586B10D802F5977E88D"

. "2DD2898D6F17A614CC0109E9CE97D02D006EC00086C64859174001"

. "0C8AF14E0E180253673400AA48D15E468A2000ADCCED1A174218D6"

. "C017DCFAA4EB2C8C5FA7F21D3F9152012F6C01797FF3B4AE38C32F"

. "FE7695C719A6AB5E25080250EE7BB7FEF72E13980553CE932EB26C"

. "72A2D26372D69759CC014F005E7E9F4E9FA7D3653FCC879803E200"

. "CC678470EC0010E82B11E34080330D211C663004F0010191179117"

. "9296E7F869F9C017998EF11A1BCA52989F5EA778866008D8023255"

. "DFBB7BD2A552B65A98ECFEC51D540209DFF2FF2B9C1B9FE5D6A469"

. "F81590079160094CD73D85FD2699C5C9DCF21F0700094A1AC9EDA6"

. "4AE3D37D34200B7B401596D678A73AFB2D0B1B88057230A42B2BD8"

. "8E7F9F0C94F1ECB7B0DD393489182F9802D3F875C00DC40010F891"

. "1C61F8002111BA1FC2E400BEA5AA0334F9359EA741892D81100B83"

. "337BD2DDB4E43B401A800021F19A09C1F1006229C3F8726009E002"

. "A12D71B96B8E49BB180273AA722468002CC7B818C01B04F77B39EF"

. "DF53973D95ADB5CD921802980199CF4ADAA7B67B3D9ACFBEC4F82D"

. "19A4F75DE78002007CD6D1A24455200A0E5C47801559BF58665D80"

78/86

32 Day 16, Puzzle 2: Math for Elves

Operator packets are math.

Let’s combine the parts from day one into one unified piece of code.

import : srfi :1 lists
srfi :26 cut
srfi :60 integers-as-bits
only (srfi :11) let-values
only (ice-9 match) match-let

;; map packet IDs to operator procedures
define : comp op

define proc
λ (. x) : if (apply op x) 1 0

;; preserve the name for easier debugging
set-procedure-property! proc 'name

procedure-name op
. proc

define id-operator-map
`

0 . ,+
1 . ,*
2 . ,min
3 . ,max
4 . #f ;; data
5 . , : comp >
6 . , : comp <
7 . , : comp equal?

define : id->operator id
and=> : assoc id id-operator-map

. cdr

;; unchanged tools
define : hexadecimal->bits hex

. "Turn hexadecimal string into a bitvector"
apply bitvector ;; turn bits into efficient bitarray

append-map (cut integer->list <> 4) ;; represent as bits
map (cut string->number <> 16) ;; parse as hexadecimal

map string ;; turn back to one-element strings
string->list hex ;; split into characters

79/86

define : bitvector->integer vec
list->integer

bitvector->list vec

define : identify-packet packet
. "Return (version . type) for the PACKET."
define version : bitvector->integer : bitvector-copy packet 0 3
define type : bitvector->integer : bitvector-copy packet 3 6
cons version type

define : bitvectors->integer . packets
. "Flatten subvectors and re-interpret the bits as integer"
list->integer : apply append : map bitvector->list packets

define* : literal-value-packet-data packet #:key (start 6)
. "Return values: data as integer and index after the last bit."
let loop : (nibbles '()) (index start)

define nibble : bitvector-copy packet {index + 1} {index + 5}
define value : cons nibble nibbles
if : not : bitvector-bit-set? packet index

values : apply bitvectors->integer : reverse! value
+ index 5

loop value {index + 5}

define : operator-length-bitlength packet
if : bitvector-bit-set? packet 6

. 11 15

;; adjusted parsing
define : operator-packet/fixed-len packet op data-start len

. "parse operator packet: fixed length, arbitrary packet-count."
define : after-the-end? index len

define minimal-packet {len + 6 + 5}
. {index > minimal-packet}

let loop
: next-packet data-start

packets '()
if : after-the-end? next-packet len

;; return the result and the end of the body
values : apply op : reverse packets

+ data-start len ;; end of body
;; extract packets from the packet-body
let-values

:

80/86

: data after-end
calculate-result

bitvector-copy packet next-packet
loop : + next-packet after-end

cons data packets

define : operator-packet/fixed-num packet op data-start len
. "parse operator packet: unknown length, fixed packets-count."
let loop

: next-packet data-start
packets '()
remaining len

if : zero? remaining
values : apply op : reverse packets

. next-packet
let-values

:
: data after-end

calculate-result
bitvector-copy packet next-packet

loop : + next-packet after-end
cons data packets
1- remaining

define* : calculate-result packet
. "Extract the data of literal packets and apply operations."
match-let : : (version . type) : identify-packet packet

define op : id->operator type
define : extract-len packet data-start

. "extract the length data of the packet as integer."
define vec : bitvector-copy packet 7 data-start
list->integer : bitvector->list vec

if : not op
literal-value-packet-data packet
let* ;; operator packet that can have sub-packets

: len-bits : operator-length-bitlength packet
data-start : + 6 1 len-bits
len : extract-len packet data-start
extractor

if {len-bits = 15}
. operator-packet/fixed-len
. operator-packet/fixed-num

extractor packet op data-start len

81/86

equal? '(3 54 7 9 1 0 0 1)
map calculate-result

map hexadecimal->bits '(
"C200B40A82" ;; 1+2 => 3
"04005AC33890" ;; 6*9 => 54
"880086C3E88112" ;; min 7 8 9 => 7
"CE00C43D881120" ;; max 7 8 9 => 9
"D8005AC2A8F0" ;; < 5 15 => 1
"F600BC2D8F" ;; > 5 15 => 0
"9C005AC2F8F0" ;; = 5 15 => 0
"9C0141080250320F1802104A08" ;; 1+3 = 2*2 => 1

)

This is not very efficient, because it copies bitvectors around all the time. More efficient
would be to have a view on the bitvectors, since it’s readonly. But at this point I’m
happy with the result.

82/86

33 Day 17, Puzzle 1: Aim for the Area

Calculate discrete trajectories to reach as high as possible while touching the target area.

import : only (srfi :9) define-record-type
only (srfi :26) cut

define : parse-input s
. "parse an input definition like

target area: x=20..30, y=-10..-5

Returns x-min x-max y-min y-max
"

map string->number
string-tokenize s

char-set-adjoin
char-set-intersection char-set:ascii char-set:digit
. #\-

define-record-type <particle>
make-particle x y dx dy init
. particle?
x p-x
y p-y
dx p-dx
dy p-dy
init p-init ;; initial values for tracing

define : step p
define dx : p-dx p
make-particle

+ (p-x p) (p-dx p)
+ (p-y p) (p-dy p)
if {dx < 0} {dx + 1} : max 0 {dx - 1}
- (p-dy p) 1
p-init p

define* : calculate-trajectory particle x-min x-max y-min
let loop : (points (list particle))

define p : car points
define x : p-x p
define y : p-y p
define dx : p-dx p

83/86

if : or {y < y-min} {x > x-max} : and {dx = 0} {x < x-min}
reverse points
loop : cons (step p) points

define : touches-area? trajectory x-min x-max y-min y-max
define : in-target? particle

define x : p-x particle
define y : p-y particle
and {x >= x-min} {x <= x-max} {y >= y-min} {y <= y-max}

not : null? : filter in-target? trajectory

define : max-y trajectory
apply max : map p-y trajectory

define : velocity-parameter-range x-min x-max y-min
when {y-min >= 0}

throw 'arguments-invalid-must-be-smaller-0 y-min
;; after coming down, dy is exactly -dy, so it must be at most
;; (abs y-min), else the first step below 0 already overshoots.
define dy-values

iota : 1+ : * 2 : abs y-min ;; number of steps
. y-min ;; start: assumption: y-min < 0
. 1

;; dx must be high enough that dx(dx-1)/2 >= x-min
;; dx(dx+1) >= 2*x-min
;; (dx+1)(dx+1) >= 2*x-min ;; since (x+1)(x+1)>x(x+1)
;; dx + 1 >= sqrt(2*x-min)
;; dx >= sqrt(2*x-min) - 1
define dx-start

inexact->exact
floor

1- : sqrt {2 * x-min}
;; dx must be at most x-max, else the first step already overshoots.
define dx-values

iota (1+ {x-max - dx-start}) dx-start
apply append

map : λ (x) : map (cut cons x <>) dy-values
. dx-values

define : velocities->particle velocities
make-particle 0 0

car velocities
cdr velocities

84/86

. velocities

define : max-heigth-parameters x-min x-max y-min y-max
car

sort
map : λ (t) : cons (max-y t) (p-init (car t))

filter : cut touches-area? <> x-min x-max y-min y-max
map : cut calculate-trajectory <> x-min x-max y-min

map velocities->particle
velocity-parameter-range x-min x-max y-min

λ (a b) : > (car a) (car b)

apply max-heigth-parameters
parse-input "target area: x=20..30, y=-10..-5"

85/86

34 Day 17, Puzzle 2: All the values

The same as before, but count all working initial velocity values.

;; use all from part 1
{{{d17-part-1}}}

define : count-distinct-parameters x-min x-max y-min y-max
;; the starting values are already distinct, so we just need to
;; count matching values
length

map car
filter : cut touches-area? <> x-min x-max y-min y-max

map : cut calculate-trajectory <> x-min x-max y-min
map velocities->particle

velocity-parameter-range x-min x-max y-min

apply count-distinct-parameters
parse-input "target area: x=20..30, y=-10..-5"

List of Links

draketo.de: https://www.draketo.de . 1
advent of code: https://adventofcode.com/2021/ 1
Wisp: https://www.draketo.de/software/wisp.html 1
RSS-Feed: https://www.draketo.de/software/advent-of-wisp-code-2021.xml . 1
cc by-sa: https://creativecommons.org/licenses/by-sa/4.0/ 1
AGPLv3 or later: https://www.gnu.org/licenses/agpl 1
to write games: https://hg.sr.ht/~arnebab/dryads-wake 8
guile-dsv: https://github.com/artyom-poptsov/guile-dsv/ 19
Guile: https://www.gnu.org/software/guile/ 19
wisp: https://www.draketo.de/software/wisp.html 19
Dijkstra’s algorithm: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm . 58
other priority queues with sufficient scaling: https://en.wikipedia.org/wiki/Fi

bonacci_heap#Summary_of_running_times 65
Brodal, Gerth Stølting; Lagogiannis, George; Tarjan, Robert E., 2012: https:

//www.cs.au.dk/~gerth/papers/stoc12.pdf 65
Daniel H. Larkin, Siddhartha Sen, Robert E. Tarjan, 2014: https://arxiv.org/

abs/1403.0252 . 65
Purely Functional Data Structures: https://github.com/ijp/pfds 69

86/86

https://www.draketo.de
https://adventofcode.com/2021/
https://www.draketo.de/software/wisp.html
https://www.draketo.de/software/advent-of-wisp-code-2021.xml
https://creativecommons.org/licenses/by-sa/4.0/
https://www.gnu.org/licenses/agpl
https://hg.sr.ht/~arnebab/dryads-wake
https://github.com/artyom-poptsov/guile-dsv/
https://www.gnu.org/software/guile/
https://www.draketo.de/software/wisp.html
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Fibonacci_heap#Summary_of_running_times
https://en.wikipedia.org/wiki/Fibonacci_heap#Summary_of_running_times
https://www.cs.au.dk/~gerth/papers/stoc12.pdf
https://www.cs.au.dk/~gerth/papers/stoc12.pdf
https://arxiv.org/abs/1403.0252
https://arxiv.org/abs/1403.0252
https://github.com/ijp/pfds

	Day 1, puzzle 1: Sweep the deep
	Day 1, puzzle 2: Sweep the deep averages
	Day 2, Puzzle 1: Pilot the submarine
	Day 2, Puzzle 2: Aim the submarine
	Update: simple shell-script

	Day 3, Puzzle 1: Diagnose a Dive
	Day 3, Puzzle 2: Diagnose for Life
	Day 4, Puzzle 1: Cheat the Squid
	Day 4, Puzzle 2: Let the squid win
	Day 5, Puzzle 1: Sidestep the vents
	Day 5, Puzzle 2: Sidestep the vents diagonally
	Day 6, Puzzle 1: Model Exponential Fish
	Day 6, Puzzle 2: Model Exponential Fish in Memory
	Day 7, Puzzle 1: Align Fuel Constrained Crab Guns
	Day 7, Puzzle 2: Align Stingy Crab Guns
	Day 8, Puzzle 1: Which numbers are shown?
	Day 8, Puzzle 2: Which numbers are shown?
	Day 9, Puzzle 1: Avoid smoke-sinks
	Day 9, Puzzle 2: Discover Smoke Lakes
	Day 10, Puzzle 1: Pick Wrongly Paired Parens
	Day 10, Puzzle 2: Cleanly close closables
	Day 11, Puzzle 1: Flashing Octopuses
	Day 11, Puzzle 2: Flash together, right now
	Day 12, Puzzle 1: All the exciting trails
	Day 12, Puzzle 2: Accept boredom just once
	Day 13, Puzzle 1: Fold your password
	Day 13, Puzzle 2: Fold your password
	Day 14, Puzzle 1: Polymer-synthesis
	Day 14, Puzzle 2: predict the element disbalance
	Day 15, Puzzle 1: Path planning
	Day 15, Puzzle 2: Larger path planning
	Simple Priority Queue
	Purely Functional Priority Search Queue

	Day 16, Puzzle 1: Read Elf Transmission
	Day 16, Puzzle 2: Math for Elves
	Day 17, Puzzle 1: Aim for the Area
	Day 17, Puzzle 2: All the values

