
<2025-05-01 Do> Dr. Arne Babenhauserheide / draketo.de

BSI IT Grundschutz (with Guile)

These are English summaries for the collection of best practices and requirements from
the German federal agency of security in information technology (BSI): IT-Grundschutz,
specifically the Kompendium 2023.

There are older official documents in English, but they don’t map exactly to the newest
German ones. Closest is the Compendium_2022.pdf.1

Summary:

• Always expect requirements of Information Security Management Systems (ISMS).

• Most relevant are BSI GS CON.8 and APP3.1. Depending on the project, there
can be more. Must be part of the tender.

This article Guile Scheme for practical examples. First it shows the requirements, then
concrete measures in the following style:

LABEL: Title

Requirements

• Measure

For some requirements, a solution with GNU Artanis is included. Many thanks to Nala
Ginrut for those solutions!

This is a Work in Progress (WIP). The progress markers mean: RESEARCH (need
so search for a good solution), IMPLEMENT (solution known, need to write example
code), WRITE (tools exist, need to write it down). The current status is shown in 3.

I only discuss CON (Concepts) and APP (Applications). There are others (e.g. for
OPS), but I’m a software developer and these two are what I can judge.

1Why would you follow these rules? Firstoff: if you want a government contract in Germany, you likely
have to. Also they are pretty well-written: most of these are just common sense when you want to
create reliable software. So much that if someone does not want to follow them, you can assume
that using their software might put you at risk. These rules need to be enforced, because they can
conflict with budget-pressure.

1/12

https://www.draketo.de
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium/IT_Grundschutz_Kompendium_Edition2023.pdf?__blob=publicationFile&v=4#download=1
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2022.pdf?__blob=publicationFile&v=2
https://www.gnu.org/software/guile
https://www.gnu.org/software/artanis

Contents

1 BSI GS block CON.8 2
1.1 CON.8.A2: Selection of a Process Model 2
1.2 CON.8.A3: Selection of a Development Environment 2
1.3 CON.8.A5: Secure System Design . 3
1.4 CON.8.A6: Use of External Libraries from Trusted Sources 5
1.5 CON.8.A7: Conducting Software Tests During Development 6
1.6 CON.8.A8: Provision of Patches, Updates, and Changes 6
1.7 CON.8.A10: Source Code Version Management 7
1.8 CON.8.A20: Checking External Components 8

2 BSI GS block APP.3 8
2.1 APP.3.1.A1: Clients must authenticate 8
2.2 APP.3.1.A4: Uploads must be limited as much as possible 9
2.3 APP.3.1.A7: Prevent unauthorized automated use. 9
2.4 APP.3.1.A14: Protect confidential data 10

3 Still to be done 10

1 BSI GS block CON.8

1.1 CON.8.A2: Selection of a Process Model

• Choose a model how to work, for example scrum.
• Security requirements have to be integrated into that model.
• You MUST follow that model.

• Clarify the model in the tender, if possible. Describe in which step security
requirements are checked.

1.2 CON.8.A3: Selection of a Development Environment

• Choose a development environment based on selection criteria.

• Document the decisions from the other sections.

• Use linters defined by language for code quality. Defined libraries in guix.scm

• Define which browsers and OS’es and DBs to support.

• To have a consistent environment between tooling,

2/12

https://guix.gnu.org/cookbook/en/html_node/Getting-Started.html

Don’t have passwords or variables in the git or Mercurial repository that hint
on the DEV, TEST, PROD environment! Define them in a separate repository if
needed.

1.2.1 RESEARCH Create linters for Guile

• Do the compiler messages suffice?

• Is guile-lint usable?

1.3 CON.8.A5: Secure System Design

• validate all inputs
• . . . on the server
• default settings must provide secure operation
• errors or crashes must not expose information that should be protected
• software must run with least possible privileges
• data that should be protected must be encrypted during transmission (⇒

https) and storage.
• authenticate users securely
• authentication passwords must be stored with a secure hashing scheme
• log security relevant events
• do not ship code/config with comments to the customer that could contain

secrets.
Document the system design.
You MUST validate that security requirements are fulfilled.

• Use https by default.

• keycloak (or similar external service) protects passwords.

• log as usual, do not activate debug log level by default.

• ship bytecode/binaries/jars, not source code.

• use safe defaults

– e.g. only bind to 127.0.0.1:8080, not 0.0.0.0 — enable remote access only
via SSL terminator

1.3.1 WRITE Use single-sign-on / OAUTH / JWT

Use either guile-oauth or guile-jwt while a system like keycloak handles usernames and
passwords.

3/12

https://user42.tuxfamily.org/guile-lint/guile-lint.html
https://github.com/aconchillo/guile-oauth
https://github.com/aconchillo/guile-jwt
https://www.keycloak.org/docs/latest/authorization_services/index.html

Alternatively use an oauth plugin to nginx or another SSL terminator.

1.3.2 Use nginx as SSL terminator

Terminate the SSL connection for two servers running on port 9000 and 9001. Also serve
the static files style.css favicon.ico robots.txt directly via nginx.

Write the following into /etc/nginx/sites-enabled/default:

events { }
http {

setup for logging
include /etc/nginx/conf.d/anonymized.conf;
define the two servers
upstream sub {

ip_hash;
server localhost:9000;
server localhost:9001;

}

server {
server_name sub.example.com;
static files
location ~ ^/(style.css|favicon.ico|robots.txt)$ {

root /var/www/html;
}
Guile server
location / {

proxy_pass http://sub;
}
listen 80 default_server;
listen [::]:80 default_server;

dsgvo allowed logging
access_log /var/log/nginx/sub-access.log anonymized;

}
}

On Debian and some other distributions, there is a main config in /etc/nginx/nginx.conf
which includes the files from /etc/nginx/sites-enabled/default. In these you must
leave out events { } and the include and only add the body of the http block.

The anonymized IP filter requires a file /etc/nginx/conf.d/anonymized.conf:

map $remote_addr $ip_anonym1 {
default 0.0.0;

4/12

https://oauth2-proxy.github.io/oauth2-proxy/configuration/integration/

"~(?P<ip>(\d+)\.(\d+))\.(\d+)\.\d+" $ip;
"~(?P<ip>[^:]+:[^:]+):" $ip;
}

map $remote_addr $ip_anonym2 {
default .0.0;
"~(?P<ip>(\d+)\.(\d+)\.(\d+))\.\d+" .0.0;
"~(?P<ip>[^:]+:[^:]+):" ::;
}

map $ip_anonym1$ip_anonym2 $ip_anonymized {
default 0.0.0.0;
"~(?P<ip>.*)" $ip;
}

log_format anonymized '$ip_anonymized - $remote_user [$time_local] '
'"$request" $status $body_bytes_sent '
'"$http_referer" "$http_user_agent"';

Then setup Let’s Encrypt secured SSL termination via certbot:

sudo certbot --nginx

To test it locally, run

mkdir -p /var/log/nginx # for testing you can use /tmp here and in the
config to avoid write access problems

nginx -p /etc/nginx -c sites-enabled/default

1.3.3 RESEARCH Ship only bytecode with Guile

To ensure that, you need an autotools setup to compile the files locally and then create
a local runner that adjusts the load path.

1.4 CON.8.A6: Use of External Libraries from Trusted Sources

Use libraries from trustworthy sources. Check their integrity.

• Check hashes or signatures of libraries. This happens by default when you get
dependencies via guix shell in a guix.scm.

5/12

https://guix.gnu.org/manual/en/html_node/Invoking-guix-shell.html

1.5 CON.8.A7: Conducting Software Tests During Development

Use tests during development and check for coding errors continuously.
• test the requirements
• test failure states
• test all APIs we document
• check edge cases of input values (i.e. check for division by zero)
• don’t hack on production systems!

• Build your package with Continuous Integration (CI) for centralized tests.

• Have Unit Tests, Integration Tests, code reviews.

– Add simple unit test defintion like guile-doctests. Use SRFI-64 for larger
testsuites.

– Review changes in merge requests to catch problems that can’t be caught in
automated tests. For example in Forgejo (or Github) or Heptapod pull/merge
requests.

– Define and document checklists for regular manual checks of areas that are
relevant to the security requirements.

• Don’t hack on production.

1.6 CON.8.A8: Provision of Patches, Updates, and Changes

You MUST guarantee that security critical patches and updates are provided
quickly; also when libraries have security updates. Provide checksums or signatures
for release files.

• Automate creating releases. Maybe get make distcheck working.

• At the very least integrate something like sha256sum "${file}" > "${file}".sha256

• Setup your package as channel to ensure all devs have the same packages via guix
shell. You can use an inferior channel to pin packages to specific commits.

• Automate updating libraries. Maybe adapt guix refresh for your dependency
definition in guix.scm.

• Create a CycloneDX SBOM, then setup OWASP Dependency-Track or Mend
Renovate.

6/12

https://guix.gnu.org/cookbook/en/html_node/Setting-Up-Continuous-Integration.html
https://hg.sr.ht/~arnebab/guile-doctests
https://srfi.schemers.org/srfi-64/srfi-64.html
https://forgejo.org/
https://github.com/
https://foss.heptapod.net
https://guix.gnu.org/cookbook/en/html_node/The-Repository-as-a-Channel.html
https://guix.gnu.org/manual/en/html_node/Inferiors.html
https://www.draketo.de/software/package-guix#org8a1cac5
https://cyclonedx.org/specification/overview/
https://dependencytrack.org/
https://www.mend.io/renovate/
https://www.mend.io/renovate/

1.6.1 DONE Create SBOM from Guix

Since Nov. 12th 2025, GNU Guix can be used to create a complete SBOM in cyclonedx
json format for all packaged software:

guix graph guile --backend=cyclonedx-json | head ; echo ...

{
"bomFormat": "CycloneDX",
"specVersion": "1.6",
"metadata": {

"timestamp": "2025-12-29T20:01:10Z",
"tools": {

"components": [
{

"type": "operating-system",
"name": "guix"

...

To only create an SBOM of a specific depth, use --max-depth=N:

guix graph guile --backend=cyclonedx-json | grep '"name":' | wc -l
guix graph guile --backend=cyclonedx-json --max-depth=1 | grep '"name":' | wc -l

11
10

In short:

guix graph guile -b cyclonedx-json -M 1

To create an SBOM for a non-packaged tool, write a local guix.scm file, then you can
graph from that. With the example of dryads-wake:

cd /path/to/dryads-wake && \
guix graph -L . -e '(load "guix.scm")' -b cyclonedx-json | grep '"name":' | wc -l && \
=> 172
guix graph -L . -e '(load "guix.scm")' -b cyclonedx-json -M1 | grep '"name":' | wc -l
=> 13

1.7 CON.8.A10: Source Code Version Management

• Use a version tracking system. Create backups of it.

• Version tracking with Git or Mercurial.

7/12

https://codeberg.org/guix/guix/pulls/2405
https://guix.gnu.org/
https://cyclonedx.org/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://hg.sr.ht/~arnebab/dryads-wake/browse
https://git-scm.com/
https://mercurial-scm.org

• Have tags and release branches as defined for the project in 1.1. An example:
branching strategy for Mercurial.

• Have off-site backups of the source repository. Simplest: regularly push to an
off-site server via SSH. For confidentiality, regularly export bundles, encrypt them
and upload these with SSH/scp.

1.8 CON.8.A20: Checking External Components

• check libraries. Either of:
– use established checks, or
– check for vulnerabilities ourselves

• Check all external components with checksums or certificates (signatures).
• Avoid old versions of libraries.
• Prove sufficient checking.

• Check hashes of libraries. Happens automatically when using guix shell; see 1.4.

• Maybe use Renovate in ci/cd.

2 BSI GS block APP.3

2.1 APP.3.1.A1: Clients must authenticate

• auth-retries must be limited

2.1.1 When using keycloak and oauth/jwt, configure keycloak for limited retries

Enable Brute Force Detection for Max Login Failures, locking the account for at least a
few minutes.

Maybe also see the option http-max-queued-requests in Configuring Keycloak for
production.

2.1.2 IMPLEMENT create helpers for authorized handler definition

;; default handler definition
define-authorized method : handler request body

;; ...
values ...

;; unauthorized

8/12

mercurial-branching-strategy.org
https://docs.renovatebot.com/#why-use-renovate
https://stackoverflow.com/a/69256688/7666
https://www.keycloak.org/server/configuration-production
https://www.keycloak.org/server/configuration-production

define-unauthorized method : handler request body
;; ...
values ...

2.2 APP.3.1.A4: Uploads must be limited as much as possible

If Uploads they are allowed:
• limit to permitted clients
• use restrictive access rights
• ensure that files are only saved in allowed places

2.2.1 IMPLEMENT define an upload helper with configurable upload limits

• always require authorization for uploads

• have configurable upload locations

• standardized configuration via config file (maybe with guile-config)

• configureable via environment variables

2.2.2 Artanis: configurable upload control Artanis

• configurable using the artanis.conf template

• For details see (upload . . .) definition in the code

2.3 APP.3.1.A7: Prevent unauthorized automated use.

• Allow intended automated use like RSS feeds.

• Ensure that any other use requires a manual login.

2.3.1 IMPLEMENT make authorized access the default

Use explizit unauthorized handler from 2.1. Make unauthorized less convenient than
authorized to avoid nudging people to unsafe patterns.

2.3.2 RESEARCH provide rate limits configuration that rate limits by default

(to be written)

9/12

https://gitlab.com/a-sassmannshausen/guile-config
https://gitlab.com/hardenedlinux/artanis/-/blob/master/artanis/config.scm?ref_type=heads#L370

2.4 APP.3.1.A14: Protect confidential data

• MUST use serverside crypto to prevent unauthorized access.
• MUST use salted hash for passwords.
• MUST prevent forbidden access to source files.

• use trustworthy server-side salted hash method for passwords

• Javascript files are sources: minimize which Javascript files are accessible without
login

– in addition to 1.3: not having sources in production

• login forms should import only the Javascript they really need

2.4.1 secure login

RESEARCH Use salted hash for password login with plain Guile (need to find
and describe good options)

Alternatively avoid handling passwords and use oauth or jwt for authorization
See #CON.8.A5: Use single-sign-on / OAUTH / JWT.

Artanis: integrate oauth or jwt or use the #:auth handler Artanis For oauth or
jwt, see 1.3. For the auth-handler see the Authentication Section of the Artanis manual.

2.4.2 IMPLEMENT Provide static files in authorized and un-authorized flavor

• provide static file handler

• configurable like the APP.3.1.A4: upload handler.

3 Still to be done
RESEARCH IMPLEMENT WRITE
Create linters for create helpers for Use single-sign-on
Ship only bytecode define an upload he
provide rate limits make authorized acc
Use salted hash for Provide static file

10/12

https://www.gnu.org/software/artanis/manual/artanis.html#Authentication

List of Links

draketo.de: https://www.draketo.de . 1
IT-Grundschutz: https://www.bsi.bund.de/DE/Themen/Unternehmen-und

-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grund
schutz_node.html . 1

Kompendium 2023: https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Grundschutz/IT-GS-Kompendium/IT_Grundschutz_Kompendiu
m_Edition2023.pdf?__blob=publicationFile&v=4#download=1 1

older official documents in English: https://www.bsi.bund.de/EN/Themen/
Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-G
rundschutz/it-grundschutz_node.html 1

Compendium_2022.pdf: https://www.bsi.bund.de/SharedDocs/Downloads
/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2022.pdf?__bl
ob=publicationFile&v=2 . 1

Guile Scheme: https://www.gnu.org/software/guile 1
GNU Artanis: https://www.gnu.org/software/artanis 1
in guix.scm: https://guix.gnu.org/cookbook/en/html_node/Getting-Started.h

tml . 2
guile-lint: https://user42.tuxfamily.org/guile-lint/guile-lint.html 3
guile-oauth: https://github.com/aconchillo/guile-oauth 3
guile-jwt: https://github.com/aconchillo/guile-jwt 3
keycloak: https://www.keycloak.org/docs/latest/authorization_services/inde

x.html . 3
oauth plugin to nginx: https://oauth2-proxy.github.io/oauth2-proxy/configur

ation/integration/ . 4
guix shell: https://guix.gnu.org/manual/en/html_node/Invoking-guix-shell.h

tml . 5
Continuous Integration (CI): https://guix.gnu.org/cookbook/en/html_node/S

etting-Up-Continuous-Integration.html 6
guile-doctests: https://hg.sr.ht/~arnebab/guile-doctests 6
SRFI-64: https://srfi.schemers.org/srfi-64/srfi-64.html 6
Forgejo: https://forgejo.org/ . 6
Github: https://github.com/ . 6
Heptapod: https://foss.heptapod.net . 6
as channel: https://guix.gnu.org/cookbook/en/html_node/The-Repository-a

s-a-Channel.html . 6
inferior channel: https://guix.gnu.org/manual/en/html_node/Inferiors.html . 6
guix refresh: https://www.draketo.de/software/package-guix#org8a1cac5 . . 6
CycloneDX SBOM: https://cyclonedx.org/specification/overview/ 6
OWASP Dependency-Track: https://dependencytrack.org/ 6
Mend Renovate: https://www.mend.io/renovate/ 6
Nov. 12th 2025: https://codeberg.org/guix/guix/pulls/2405 7
Guix: https://guix.gnu.org/ . 7

11/12

https://www.draketo.de
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/DE/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium/IT_Grundschutz_Kompendium_Edition2023.pdf?__blob=publicationFile&v=4#download=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium/IT_Grundschutz_Kompendium_Edition2023.pdf?__blob=publicationFile&v=4#download=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/IT-GS-Kompendium/IT_Grundschutz_Kompendium_Edition2023.pdf?__blob=publicationFile&v=4#download=1
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/EN/Themen/Unternehmen-und-Organisationen/Standards-und-Zertifizierung/IT-Grundschutz/it-grundschutz_node.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2022.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2022.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/International/bsi_it_gs_comp_2022.pdf?__blob=publicationFile&v=2
https://www.gnu.org/software/guile
https://www.gnu.org/software/artanis
https://guix.gnu.org/cookbook/en/html_node/Getting-Started.html
https://guix.gnu.org/cookbook/en/html_node/Getting-Started.html
https://user42.tuxfamily.org/guile-lint/guile-lint.html
https://github.com/aconchillo/guile-oauth
https://github.com/aconchillo/guile-jwt
https://www.keycloak.org/docs/latest/authorization_services/index.html
https://www.keycloak.org/docs/latest/authorization_services/index.html
https://oauth2-proxy.github.io/oauth2-proxy/configuration/integration/
https://oauth2-proxy.github.io/oauth2-proxy/configuration/integration/
https://guix.gnu.org/manual/en/html_node/Invoking-guix-shell.html
https://guix.gnu.org/manual/en/html_node/Invoking-guix-shell.html
https://guix.gnu.org/cookbook/en/html_node/Setting-Up-Continuous-Integration.html
https://guix.gnu.org/cookbook/en/html_node/Setting-Up-Continuous-Integration.html
https://hg.sr.ht/~arnebab/guile-doctests
https://srfi.schemers.org/srfi-64/srfi-64.html
https://forgejo.org/
https://github.com/
https://foss.heptapod.net
https://guix.gnu.org/cookbook/en/html_node/The-Repository-as-a-Channel.html
https://guix.gnu.org/cookbook/en/html_node/The-Repository-as-a-Channel.html
https://guix.gnu.org/manual/en/html_node/Inferiors.html
https://www.draketo.de/software/package-guix#org8a1cac5
https://cyclonedx.org/specification/overview/
https://dependencytrack.org/
https://www.mend.io/renovate/
https://codeberg.org/guix/guix/pulls/2405
https://guix.gnu.org/

cyclonedx: https://cyclonedx.org/ . 7
guix.scm: https://guix.gnu.org/en/blog/2023/from-development-environment

s-to-continuous-integrationthe-ultimate-guide-to-software-development
-with-guix/ . 7

dryads-wake: https://hg.sr.ht/~arnebab/dryads-wake/browse 7
Git: https://git-scm.com/ . 7
Mercurial: https://mercurial-scm.org . 7
branching strategy for Mercurial: mercurial-branching-strategy.org 8
Renovate: https://docs.renovatebot.com/#why-use-renovate 8
Max Login Failures: https://stackoverflow.com/a/69256688/7666 8
Configuring Keycloak for production: https://www.keycloak.org/server/config

uration-production . 8
guile-config: https://gitlab.com/a-sassmannshausen/guile-config 9
see (upload . . .) definition in the code: https://gitlab.com/hardenedlinux/art

anis/-/blob/master/artanis/config.scm?ref_type=heads#L370 9
Authentication Section: https://www.gnu.org/software/artanis/manual/arta

nis.html#Authentication . 10

12/12

https://cyclonedx.org/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://guix.gnu.org/en/blog/2023/from-development-environments-to-continuous-integrationthe-ultimate-guide-to-software-development-with-guix/
https://hg.sr.ht/~arnebab/dryads-wake/browse
https://git-scm.com/
https://mercurial-scm.org
mercurial-branching-strategy.org
https://docs.renovatebot.com/#why-use-renovate
https://stackoverflow.com/a/69256688/7666
https://www.keycloak.org/server/configuration-production
https://www.keycloak.org/server/configuration-production
https://gitlab.com/a-sassmannshausen/guile-config
https://gitlab.com/hardenedlinux/artanis/-/blob/master/artanis/config.scm?ref_type=heads#L370
https://gitlab.com/hardenedlinux/artanis/-/blob/master/artanis/config.scm?ref_type=heads#L370
https://www.gnu.org/software/artanis/manual/artanis.html#Authentication
https://www.gnu.org/software/artanis/manual/artanis.html#Authentication

	BSI GS block CON.8
	CON.8.A2: Selection of a Process Model
	CON.8.A3: Selection of a Development Environment
	CON.8.A5: Secure System Design
	CON.8.A6: Use of External Libraries from Trusted Sources
	CON.8.A7: Conducting Software Tests During Development
	CON.8.A8: Provision of Patches, Updates, and Changes
	CON.8.A10: Source Code Version Management
	CON.8.A20: Checking External Components

	BSI GS block APP.3
	APP.3.1.A1: Clients must authenticate
	APP.3.1.A4: Uploads must be limited as much as possible
	APP.3.1.A7: Prevent unauthorized automated use.
	APP.3.1.A14: Protect confidential data

	Still to be done

