
<2021-08-25 Mi> Dr. Arne Babenhauserheide / draketo.de

10 ways GNU Guile is 10x better
#4 will shock you! :-)

In Rust at Facebook by Fitzhardinge of the Mercurial team, Jeremy
says that a new language must be 10x better at something than one
of the (other) incumbent languages.

So I asked on IRC: what’s the 10x advantage of Guile?

This is not „which Scheme to choose“ (aside from one specific feature).
For that question, see the opinionated guide to scheme implementations.
For Guile’s 10x advantages (some due to being Scheme), read on.

Contents
1 powerful core 2

2 runtime introspection and modification 2

3 s-expressions and homoiconicity 3

4 interfacing with C and access from C 6

5 fibers 6

6 embedded natural script writing 7

7 hackability 8

8 complete info-manual 9

9 prototyping and creativity 9

10 lots of fun 9

11 More 10x advantages 10

List of Links 10

1/12

https://www.draketo.de
https://www.youtube.com/watch?v=kylqq8pEgRs&list=PL85XCvVPmGQhDOUIZBe6u388GydeACbTt&index=8
http://gnu.org/s/guile
https://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations

1 powerful core

Macros (define-syntax) and delimited continuations enable creation
of high level concepts like fibers without having to change the core.

Thanks to the efficient compiler, there is rarely a need to use macros
for performance instead of for semantics, so your code stays cleaner.

thanks to stis.

“Delimited continuations are superior to Python’s yield,
the macrology is superior to any language except Scheme,
the hackability is better then essentially all closed sorurce
solutions of program languages.
. . .
And the efficient inlining of lambdas is perhaps matched by
C, but not many higher languages. The design of Scheme
really shines here compared to e.g. Python.” — stis who is
building Python on Guile

2 runtime introspection and modification

Compared to C and Go, runtime access to running code is very useful.
You can jump into a module and modify anything during runtime.

thanks to str1ngs for this point.

While you even get a subset of this with Java using incremental compi-
lation and hot reloading of code in IntelliJ, at work we’re always danc-
ing around changes that change some method arguments or streams,
because those break hot reloading so you have to restart.

And for Javascript we can in theory replace every function, but in
practice at work we transpile everything with babel and webpack and
that breaks hot reloading, so we have to reload after every change.

2/12

https://github.com/wingo/fibers
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html

In Guile you can either start in a REPL, or create a dedicated REPL
in the running program, or create a REPL socket for your development
environment and connect to that to hack on the running server.

Then you can re-define all top-level definitions in all modules.

As example str1ngs usually develops the Nomad web browser like that.

And if you need a game loop as main thread, you can use it to drive
the cooperative repl server.

3 s-expressions and homoiconicity

Compared to non-lisp languages, the regularity of s-expressions and be-
ing able to treat code as data and the other way round (homoiconicity)
is a big advantage.

thanks to pinoaffe for this point.

This is an essential elegance I want to conserve in wisp.

Wikipedia notes as advantage that

extending the language with new concepts typically be-
comes simpler, as data representing code can be passed
between the meta and base layer of the program. — Ho-
moiconicity: Uses and Advantages

and

It can be much easier to understand how to manipulate the
code since it can be more easily understood as simple data
(since the format of the language itself is a data format).
— Homoiconicity: Uses and Advantages

For Wisp I use this a lot, because it allows me to do a first simple
pass over the code, add incremental improvements and finally have the
cleaned up code that I can pass to the language spec definition:

3/12

http://www.nongnu.org/nomad/
https://www.gnu.org/software/guile/docs/docs-2.2/guile-ref/Cooperative-REPL-Servers.html
https://en.wikipedia.org/wiki/Homoiconicity
http://www.draketo.de/proj/wisp/why-wisp.html
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages

define : wisp-scheme-read-chunk port
. "Read and parse one chunk of wisp-code"

let : : lines : wisp-scheme-read-chunk-lines port
wisp-make-improper

wisp-replace-empty-eof
wisp-unescape-underscore-and-colon

wisp-replace-paren-quotation-repr
wisp-propagate-source-properties

wisp-scheme-indentation-to-parens
lines↪→

Also this enables me to write a Question-Asking macro for dryads wake
without going totally insane. Usage:

Choose
: new game

,(first-encounter)
: load game

,(load-game)
: show prologue

,(prologue) ,(welcome-screen)
: exit

We hope you enjoyed our game!

Definition:

define-syntax-rule : Choose . choices
. "Ask questions, apply consequences"
begin

say-lines : ("") ;; newline before question
let loop :

;; Get the response via the Ask macro
;; to evaluate inline-code incrementally
define resp : string->number : Ask choices

4/12

https://hg.sr.ht/~arnebab/dryads-wake/

or
cond

: equal? resp 1
Respond1 choices

: equal? resp 2
Respond2 choices

: equal? resp 3
Respond3 choices

: equal? resp 4
Respond4 choices

: equal? resp 5
Respond5 choices

: equal? resp 6
Respond6 choices

else
. #f

loop

define-syntax Ask
lambda (x)

syntax-case x ()
: _ (choices ...)

#` begin
ask (QuoteFirsts (choices ...))

QuoteFirsts interprets the questions as data but leaves the answers as
code which can e.g. use ,(load-game) to open the load game dialog.

5/12

4 interfacing with C and access from C

Most of Guile procedures can be called from C (for example when
embedding Guile) and it is easy to interoperate with C from Guile
Scheme.

thanks to str1ngs for this points, too.

I did not embed Guile in a C-program myself yet, but Guile provides
detailed examples and tutorials for this in its Documentation, with C
interfaces explicitly documented for most of its procedures.

This is the shocking number 4: Guile is better for writing C-Programs
than C itself. Consider yourself shocked :-) — and no, this argu-
mentation is not complete. But if you’re here, the title led you here.
#legitbait.

If you want to be seriously shocked, look at c-indent. Yes, that is
Guile.

5 fibers

Fibers provide lightweight threads in Guile without having to change
anything in the core of Guile. They are reasonably performant and
provide concurrency as with Go-channels.

thanks to stis for this point.

With the name giving fibers and channels they provide an efficient
and scalable model for coordinated concurrency. See the manual for
details.

You can test their raw efficiency using either the webserver-benchmark
or the guile-fibers entry in the skynet benchmark.

fibers is better than kludges like marking procedures and
what not and it is matched by very few languages. — stis

6/12

https://www.gnu.org/software/guile/learn/
https://www.youtube.com/watch?v=S2xHZPH5Sng
http://sph.mn/computer/guides/c/c-indent.html
https://github.com/wingo/fibers/wiki/Manual
https://github.com/wingo/fibers/tree/master/benchmarks
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.scm

6 embedded natural script writing

For me, one 10x advantage over every other language is that I could
integrate wisp and get an embedded script writing language for dryads
wake (as embedded domain specific language: eDSL). There’s a talk
that compares this to other approaches (including ones I tried before):
Natural script writing with Guile. Here’s a real example:

define : first-encounter
Enter : Juli Fin :profile juli

Melter Lark :profile melter
Rooted Breeze :profile dryad
Old One

Print
Please choose your name

game-state-init!
game-state-name-set! : read-line
game-state-id-set! : name->id : game-state-name
game-state-scene-set! first-encounter
save-state : game-state-id
Print

Welcome ,(string-append (game-state-name) "!")

Juli Fin
Finally we have our own home!

Melter Lark
It took long enough.

Juli Fin
And it is moist for sure.

Melter Lark
I will dry it out.

7/12

wisp.org
https://hg.sr.ht/~arnebab/dryads-wake/
https://hg.sr.ht/~arnebab/dryads-wake/
https://fosdem.org/2017/schedule/event/naturalscriptwritingguile/

Rooted Breeze :eerie
My slumber breaks
my mind awakes
who are you strangers
in my home?

Old One
How do you answer?
Juli is ,(score->description

(profile-ability-score (game-state) 'juli
'explain))

↪→

↪→

. at explaining
and ,(score->description (profile-ability-score

(game-state) 'juli 'fast-talk))↪→

. at fast-talk.
Choose

: explain your situation to appease the dryad
,(explain-your-home)

: fast-talk the dryad to get her to leave and
risk her anger↪→

,(fast-talk-the-dryad)

7 hackability

The language tower and infrastructure make it enjoyable to hack on
and extend Guile itself.

thanks to stis for this point.

language tower and effective syntax extensions (define-
syntax, etc.) - without that, lokke might well not exist
(such as it is), at least not by now. — rlb (lokke is Clojure
on top of Guile)

8/12

https://github.com/lokke-org/lokke

8 complete info-manual

Guile comes with a complete and very readable manual in info-format.
If you’ve ever tried to program Python without internet access (or just
without Google), you’ll know to deeply appreciate this.

You can find most answers by running

info guile

in the shell, or calling

C-h i m Guile Reference

in Emacs and starting a full-text search with C-s {search terms}
C-s.

9 prototyping and creativity

Compared to Python and C++ Guile removes barriers to abstrac-
tion. This is also possible with R, but Guile provides good enough
performance for these abstractions to make them practical to use.

The low startup time helps for this, too.

thanks to vijaymarupudi for this point.

“Guile is particularly great for prototyping and creativity,
and its performance allows for such experiments to be de-
ployed to the world with minimal changes.

I’ve been using it a lot lately for data cleaning and modeling,
and it’s been great” — vijaymarupudi

10 lots of fun

Hacking in Guile/Scheme is just lots of fun.

9/12

https://www.gnu.org/software/texinfo/

thanks to dsmith for this. Even though this sounds small and gets only
a single line in this article, looking at the enthusiasm of people who
hack on Guix shows that dsmith clearly has a point!

11 More 10x advantages

After I wrote this article, people noted more advantages. I might work
them into the article sometime later, but for now they live here:

• named lets, I could be without map reduce and all that, just
let me have a named let construct — stis

• python-on-guile has copyable generators and yield as an actual
function that can be passed to other functions — stis writing
about Python on Guile

• Purely Functional Datastructures and fectors.

• Hoot lets you port your tools to the browser with minimal over-
head — including games like Goblinville.

• the minimalism “design not by piling feature on top of feature,
but by removing the weaknesses and restrictions that make
additional features appear necessary” that allows teaching pro-
gramming from first define to deployment on 64 pocket-sized
pages.

List of Links

draketo.de: https://www.draketo.de 1
Rust at Facebook by Fitzhardinge of the Mercurial team:

https://www.youtube.com/watch?v=kylqq8pEgRs&li
st=PL85XCvVPmGQhDOUIZBe6u388GydeACbTt&
index=8 . 1

Guile: http://gnu.org/s/guile 1

10/12

http://guix.gnu.org
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html
https://github.com/ijp/pfds
https://github.com/ijp/fectors
https://spritely.institute/hoot/
https://spritely.institute/news/building-interactive-web-pages-with-guile-hoot.html
https://spritely.institute/news/make-a-game-with-hoot-for-the-lisp-game-jam.html
https://spritely.institute/news/goblinville-a-spring-lisp-game-jam-2025-retrospective.html
programming-scheme.org
programming-scheme.org
https://www.draketo.de
https://www.youtube.com/watch?v=kylqq8pEgRs&list=PL85XCvVPmGQhDOUIZBe6u388GydeACbTt&index=8
https://www.youtube.com/watch?v=kylqq8pEgRs&list=PL85XCvVPmGQhDOUIZBe6u388GydeACbTt&index=8
https://www.youtube.com/watch?v=kylqq8pEgRs&list=PL85XCvVPmGQhDOUIZBe6u388GydeACbTt&index=8
http://gnu.org/s/guile

opinionated guide to scheme implementations: https://wing
olog.org/archives/2013/01/07/an-opinionated-guide-t
o-scheme-implementations 1

fibers: https://github.com/wingo/fibers 2
Python on Guile: https://www.mail-archive.com/guile-devel

%40gnu.org/msg15805.html 2
Nomad web browser: http://www.nongnu.org/nomad/ . . . 3
cooperative repl server: https://www.gnu.org/software/guile

/docs/docs-2.2/guile-ref/Cooperative-REPL-Servers.h
tml . 3

homoiconicity: https://en.wikipedia.org/wiki/Homoiconicity 3
I want to conserve in wisp: http://www.draketo.de/proj/wi

sp/why-wisp.html . 3
Homoiconicity: Uses and Advantages: https://en.wikipedia

.org/w/index.php?title=Homoiconicity&oldid=10374
34473#Uses_and_advantages 3

Homoiconicity: Uses and Advantages: https://en.wikipedia
.org/w/index.php?title=Homoiconicity&oldid=10374
34473#Uses_and_advantages 3

dryads wake: https://hg.sr.ht/~arnebab/dryads-wake/ . . . 4
in its Documentation: https://www.gnu.org/software/guile

/learn/ . 6
#legitbait: https://www.youtube.com/watch?v=S2xHZPH5

Sng . 6
c-indent: http://sph.mn/computer/guides/c/c-indent.html . 6
manual: https://github.com/wingo/fibers/wiki/Manual . . 6
webserver-benchmark: https://github.com/wingo/fibers/tr

ee/master/benchmarks 6
guile-fibers entry in the skynet benchmark: https://github.c

om/atemerev/skynet/blob/master/guile-fibers/skynet
.scm . 6

wisp: wisp.org . 7
dryads wake: https://hg.sr.ht/~arnebab/dryads-wake/ . . . 7
Natural script writing with Guile: https://fosdem.org/2017/

schedule/event/naturalscriptwritingguile/ 7

11/12

https://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations
https://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations
https://wingolog.org/archives/2013/01/07/an-opinionated-guide-to-scheme-implementations
https://github.com/wingo/fibers
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html
http://www.nongnu.org/nomad/
https://www.gnu.org/software/guile/docs/docs-2.2/guile-ref/Cooperative-REPL-Servers.html
https://www.gnu.org/software/guile/docs/docs-2.2/guile-ref/Cooperative-REPL-Servers.html
https://www.gnu.org/software/guile/docs/docs-2.2/guile-ref/Cooperative-REPL-Servers.html
https://en.wikipedia.org/wiki/Homoiconicity
http://www.draketo.de/proj/wisp/why-wisp.html
http://www.draketo.de/proj/wisp/why-wisp.html
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://en.wikipedia.org/w/index.php?title=Homoiconicity&oldid=1037434473#Uses_and_advantages
https://hg.sr.ht/~arnebab/dryads-wake/
https://www.gnu.org/software/guile/learn/
https://www.gnu.org/software/guile/learn/
https://www.youtube.com/watch?v=S2xHZPH5Sng
https://www.youtube.com/watch?v=S2xHZPH5Sng
http://sph.mn/computer/guides/c/c-indent.html
https://github.com/wingo/fibers/wiki/Manual
https://github.com/wingo/fibers/tree/master/benchmarks
https://github.com/wingo/fibers/tree/master/benchmarks
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.scm
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.scm
https://github.com/atemerev/skynet/blob/master/guile-fibers/skynet.scm
wisp.org
https://hg.sr.ht/~arnebab/dryads-wake/
https://fosdem.org/2017/schedule/event/naturalscriptwritingguile/
https://fosdem.org/2017/schedule/event/naturalscriptwritingguile/

lokke: https://github.com/lokke-org/lokke 8
info-format: https://www.gnu.org/software/texinfo/ 9
Guix: http://guix.gnu.org 10
Python on Guile: https://www.mail-archive.com/guile-devel

%40gnu.org/msg15805.html 10
Purely Functional Datastructures: https://github.com/ijp/p

fds . 10
fectors: https://github.com/ijp/fectors 10
Hoot: https://spritely.institute/hoot/ 10
to the browser: https://spritely.institute/news/building-int

eractive-web-pages-with-guile-hoot.html 10
including games: https://spritely.institute/news/make-a-g

ame-with-hoot-for-the-lisp-game-jam.html 10
Goblinville: https://spritely.institute/news/goblinville-a-spr

ing-lisp-game-jam-2025-retrospective.html 10
from first define to deployment on 64 pocket-sized pages:

programming-scheme.org 10

12/12

https://github.com/lokke-org/lokke
https://www.gnu.org/software/texinfo/
http://guix.gnu.org
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html
https://www.mail-archive.com/guile-devel%40gnu.org/msg15805.html
https://github.com/ijp/pfds
https://github.com/ijp/pfds
https://github.com/ijp/fectors
https://spritely.institute/hoot/
https://spritely.institute/news/building-interactive-web-pages-with-guile-hoot.html
https://spritely.institute/news/building-interactive-web-pages-with-guile-hoot.html
https://spritely.institute/news/make-a-game-with-hoot-for-the-lisp-game-jam.html
https://spritely.institute/news/make-a-game-with-hoot-for-the-lisp-game-jam.html
https://spritely.institute/news/goblinville-a-spring-lisp-game-jam-2025-retrospective.html
https://spritely.institute/news/goblinville-a-spring-lisp-game-jam-2025-retrospective.html
programming-scheme.org

	powerful core
	runtime introspection and modification
	s-expressions and homoiconicity
	interfacing with C and access from C
	fibers
	embedded natural script writing
	hackability
	complete info-manual
	prototyping and creativity
	lots of fun
	More 10x advantages
	List of Links

