<2020-08-25 Di> Dr. Arne Babenhauserheide / draketo.de

Small snippets of Guile Scheme

There’s a lot of implicit knowledge among Guile developers. Here I gather some useful
snippets I found along the way.

More useful stuff to get things done in Guile is available in guile-basics and py2guile.

Contents
1 log-expression: print variable name and value 2
2 Use Guile-yaml to search for the first match in a yaml file 2
3 Count occurences of each key in an alist 3
4 Common Substrings and Somewhat Cheap String Similarity 4
4.1 Get all common substrings 4
4.2 Somewhat Cheap String Similarity)
5 pivot a table 7
6 Script with minimal startup time 7
7 Shell scripts in Guile 8
8 define-typed 9
8.1 Implementation 9
8.2 Usage o 12
8.3 Benchmark 13
84 Summary . . . o. ... 15
9 Guile imports in Makefiles 16
10 minimal syntax rule that uses homoiconicity 16
11 Generator functions with state 17

1/17

https://www.draketo.de
http://gnu.org/s/guile
https://www.draketo.de/proj/guile-basics
https://www.draketo.de/py2guile

1 log-expression: print variable name and value

During debugging I often want to display variables by name and value. I used to print
name and value by hand, but this quickly becomes tedious

(define foo 'bar)

(format #t "foo: “a\n" foo)

;5 or

(display 'foo) (display foo) (newline)

Therefore I build me something simpler:

(define-syntax-rule (log-exprs exp ...)
(begin (format #t "“a: “S\n" (quote exp) exp) ...))

Now I can simply log variables like this:

(define foo 'bar)

(log-exprs foo)

;5 => foo: bar

(define bar 'baz)

(log-exprs foo bar (list "hello"))
;5 foo: bar

;5 bar: baz

;; (list hello): ("hello")

2 Use Guile-yaml to search for the first match in a
yaml file

This uses guile-libyaml to parse the yaml file and (ice-9 match) to recursively search
within the file.

The example file is demol.yml from the guile-yaml repo:

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:

- huey

2/17

https://github.com/mwette/guile-libyaml

- dewey
- louie
- fred
xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:
count: 1
location: "a pear tree"
turtle-doves: two

I'm searching for the first match to "partridges":

(import (yaml) (ice-9 match))
(define demo (read-yaml-file "demol.yml"))
(let match-demo ((demo demo))
(match demo
((("partridges" . b) c ...) b)
(else (if (pair? demo)
(or (match-demo (cdr demo)) (match-demo (car demo)))
#£))))

;5 => (("count” . "1") ("location”" . "a pear tree"))

To use this snippet, start guile as guile -L . in the guile-libyaml repo.

3 Count occurences of each key in an alist

This was asked by fnstudio in the #guile channel on Freenode.

Given a list of pairs (like xy-coordinates), count how often the first element appears.

(define xydata '((1 . 1)(1 . 2)(1 . 3)(2 . 12 . 2)))

(define (assoc-increment! key alist)
"Increment the value of the key in the alist, set it to 1 if it does
— not exist."
(define res (assoc key alist))
(assoc-set! alist key (or (and=> (and=> res cdr) 1+) 1)))

(fold assoc-increment! '() (map car xydata))

;00 => ((2 . 2) (1. 3))

3/17

http://freenode.net/

4 Common Substrings and Somewhat Cheap String
Similarity

Getting the longest common substring is a traditional task, a simplification of actual
edit distance like the Levenshtein distance (which actually has fast estimators).

But maybe you want all common substrings without duplicates.

The following code is not optimized, but it works.

4.1 Get all common substrings
4.1.1 Usage

Different from the requirements in in Rosetta Code, this returns not the longest common
substring, but all non-consecutive substrings.

(longest-common-substrings "thisisatest" "testingl23testing")

s =D (Iltestll II,Z;II)

(longest-common-substrings "thisisatestrun" "thisisatestunseen")
;. => ("thistsatest" "un')

4.1.2 Implementation

Warning: This is NOT fast. It takes a few seconds when run over two text documents
with around 2000 characters each.

(import (srfi srfi-1))
(define (longest-common-substrings sl s2)
(define cl (string->list sl1))
(define c2 (string->list s2))
(define (common-prefix a b)
(let loop ((prefix '()) (a a) (b b))
(cond ((or (null? a) (null? b)) (reverse! prefix))
((not (equal? (car a) (car b))) (reverse! prefix))
(else (loop (cons (car a) prefix) (cdr a) (cdr b))))))
(define (longer a b)
(if (> (length a) (length b))
a b))
(define (common-substrings a b)
(define substrings '())
(let loop ((a2 a) (b b) (longest '()))
(let ((prefix (common-prefix a2 b)))
(let ((anew (drop a2 (length prefix))))

4/17

https://www.rosettacode.org/wiki/Longest_common_substring#JavaScript
https://www.rosettacode.org/wiki/Levenshtein_distance#Scheme
https://dzone.com/articles/super-fast-estimates-of-levenshtein-distance
https://www.rosettacode.org/wiki/Longest_common_substring#JavaScript

(when (not (null? prefix))
(let ((str (apply string prefix)))
(when (not (member str substrings))
(set! substrings (cons str substrings)))))
(cond ((null? b) #t) ;; done
((null? anew)
(loop a (cdr b) "))
((null? prefix)
(loop (cdr anew) b longest))
(else
(loop (cdr anew) b (longer prefix longest)))))))
substrings)
(let ((substrings (common-substrings cl c2)))
(define (contained-in-any-other s)
(any identity
(map (A (s2) (and (not (equal? s s2)) (string-contains s2
- 8)))
substrings)))
(reverse! (remove contained-in-any-other substrings))))

4.2 Somewhat Cheap String Similarity
4.2.1 Usage

(cheap-similarity "thisisatest" "thisisatest")

;3 => 3.045454545454545

(cheap-similarity "thisisatest" "thisisatestrun")

;. => 2.68

(cheap-similarity "thisisatest" "testingl23testing")
;7 => 1.21/2857142857142

(cheap-similarity "thisisatest" "criecriecriecrie"

55 =2 0.4444444444444444

4.2.2 Implementation

Warning: This is NOT well defined and is mostly untested, so it might have ugly
unforseed edge-cases and might give bad results for large classes of problems. It seems
to do what I want (get the similarity of filenames for ordering streams by similarity for
the guile media site), and it was interesting no write, but that’t about it. Use with
caution!

(import (srfi srfi-1))

5/17

(define (all-common-substrings sl s2)
(define c1 (string->list sl1))
(define c2 (string->list s2))
(define (common-prefix a b)
(let loop ((prefix '()) (a a) (b b))
(cond ((or (null? a) (null? b)) (reverse! prefix))
((not (equal? (car a) (car b))) (reverse! prefix))
(else (loop (cons (car a) prefix) (cdr a) (cdr b))))))
(define (longer a b)
(if (> (length a) (length b))
a b))
(define (common-substrings a b)
(define substrings 'Q))
(let loop ((a2 a) (b b) (longest '()))
(let ((prefix (common-prefix a2 b)))
(let ((anew (drop a2 (length prefix))))
(when (not (null? prefix))
(let ((str (apply string prefix)))
(set! substrings (cons str substrings))))
(cond ((null? b) #t) ;; done
((null? anew)
(loop a (cdr b) '0))
((null? prefix)
(loop (cdr anew) b longest))
(else
(loop (cdr anew) b (longer prefix longest)))))))
substrings)
(let ((substrings (common-substrings cl c2)))
(define (contained-in-any-other s)
(any identity
(map (A (s2) (and (not (equal? s s2)) (string-contains s2
- 8)))
substrings)))
substrings))

(define (cheap-similarity si1 s2)
(define common-length
(apply + (map string-length (all-common-substrings sl s2))))
(define total-length (+ (string-length s1) (string-length s2)))
(/ common-length total-length 1.))

6/17

5 pivot a table

(apply map list '((1 2) (1 3)))

(1 1) (2 3)

Explanation: Apply moves map list into the list, so this changes to

(map list '(1 2) (1 3))

Map takes the elements from each of the arguments to call the function, so the result is

(1ist (1ist 1 1) (list 2 3))

Or in shorthand notation:

(1 1) (2 3))

[2023-07-05 Mi]

6 Script with minimal startup time

To create a script that starts fast, you’ll want to avoid the parsing time.

If you have a script in a file named hello-world.scm, use the following:

#!/usr/bin/env bash
exec -a "$0" guile -L $(dirname $(realpath "$0")) \
-C $(dirname $(realpath "$0")) \
-e '(hello-world)' -c '' "${@}"
terminate the inline comment "started" with the #! line: !#
(define-module (hello-world)
#:export (main))

(define (main args)
(format #t "Hello “a\n" (cdr args)))

Then make it executable and run it as script:

chmod +x hello-world.scm
./hello-world.scm World
=> Hello (World)

7/17

As a benchmark, run it 100 times:

exclude single-time auto-compilation
./hello-world.scm World >/dev/null

{ time for i in {1..100}; do
./hello-world.scm World > /dev/null
done } 2>&1

I get:

real Om1,601s
user OmO,944s
sys Om0,721s

So on my machine, startup time is 16ms.

[2024-01-11 Do]

7 Shell scripts in Guile

Similar to the script above, but with a bit more convenience.

You can write shell scripts in Guile, but you’ll need to make sure you to do it in a way
which has low startup times.

The fastest I found which stays fast with larger scripts is shell-indirection calling your
scripts as modules:

====== gcriptname.scm ======

#!/usr/bin/env bash

-*- scheme -*-

set Guile if unset

if [-z ${GUILE+x} 1; then
GUILE=guile

fi

exec -a "$0" "${GUILE}" -L $(dirname $(realpath "$0")) -e
— I(SCI’ip‘tname)' —c '' "ga@"

; 1#

(define-module (scriptname) ;; same as ftilename!
#:export (main))

(define (main args)
(display args)

8/17

(newline))

Copy this into 7/ .local/bin/, make it executable with chmod +x ~/.local/bin/scriptname.scm,
and you have powerful scripting with low startup timme.

time for i in {1..100}; do scriptname.scm >/dev/null ; done

real Om3,202s
user Om2,683s
sys Om1,110s

= 32ms runtime. Not as fast as perl or bash (calling bash from bash just takes 3ms),
but pretty good.

[2024-04-18 Do]

8 define-typed

If you want to add typechecks, you can follow the format by sph-sc, a Scheme to C
compiler. It declares types after the function definition like this:

(define (hello typed-world) (string? string?)
typed-world)

That’s simple enough that a plain, hygienic syntax-rule can support it.

8.1 Implementation

For performance reasons, the following defines define-typed and define-typed*, where
define-typed* supports #:keyword arguments:

(define-module (define-typed) #:export (define-typed* define-typed))
(import (srfi :11 let-values))

;5 common procdures
(define-inlinable (call-and-check-return-type proc ret?)
(if ret? ;; #f means: do mot check
;5 get the result
(let-values ((res (proc)))
;5 typecheck the result
(unless (apply ret? res)
(error "type error: return value “a does not match ~a"

9/17

https://github.com/sph-mn/sph-sc

res ret?))
5, return the result
(apply values res))
(proc)))

(define-inlinable (check-argument-and-type-count args types)
(unless (equal? (length args) (length types))
(error "argument error: number of arguments ~a and types "a differs"
args types)))

(define (add-properties! proc name from-proc ret? types)
;; add procedure properties via an inner procedure
(set-procedure-properties! proc (procedure-properties from-proc))
;; record the types
(set-procedure-property! proc 'return-type ret?)
(set-procedure-property! proc 'argument-types types)
;; preserve the name
(set-procedure-property! proc 'name name))

;5 specific to define-typed
(define-syntax check-types
(syntax-rules ()
((_ (type? types? ...) (argument arguments ...))
(begin
(unless (type? argument)
(error "type error “a “a" type? argument))
(check-types (types? ...) (arguments ...))))
(O 0O) #£)))

(define-syntax-rule
(define-typed (procname args ...) (ret? types ...) body ...)
"Define a procedure with typechecks."

(begin
(define properties-helper (lambda (args ...) body ...))
(define (procname args ...)

;; create a sub-procedure to run after typecheck
(define (inner)
body ...)

;; typecheck the arguments

(check-types (types ...) (args ...))

;5 get and check the result

(call-and-check-return-type inner ret?))
(check-argument-and-type-count

10/17

(quote (args ...)) (quote (types ...)))
;5 add properties and return the inner procedure
(add-properties! procname 'procname properties-helper
ret? (list types ...))))

;5 specific to define-typed*
(define-syntax check-typesx*
(syntax-rules ()
((_ (type? types? ...) (argument arguments ...))
(begin
(if (and (keyword? type?)
(keyword? argument))
(unless (equal? type? argument)
(error "Keywords in arguments and types differ “a ~a"
type? argument))
(unless (type? argument)
(error "type error “a "a" type? argument)))
(check-types* (types? ...) (arguments ...))))
(C O 0O) #£)))

(define-syntax-rule
(define-typed* (procname args ...) (ret? types ...) body ...)
"Define a procedure with typecheck, taking keywords into account."
(begin
(define properties-helper (lambda* (args ...) body ...))
(definex (procname args ...)
;; create a sub-procedure to run after typecheck
(define (inner)
body ...)
;5 typecheck the arguments
(check-types* (types ...) (args ...))
;5 get and check the result
(call-and-check-return-type inner ret?))
(check-argument-and-type-count
(quote (args ...)) (quote (types ...)))
;; add properties and return the inner procedure
(add-properties! procname 'procname properties-helper
ret? (list types ...))))

This supports most features of regular define like docstrings, procedure properties,
multiple values (thanks to Vivien!), and so forth.

define-typed* also supports keyword-arguments (thanks to Zelphir Kaltstahl’s con-
tracts), but is slower.

11/17

https://codeberg.org/ZelphirKaltstahl/guile-examples/src/commit/0e231c289596cb4c445efb30168105914a8539a5/macros/contracts
https://codeberg.org/ZelphirKaltstahl/guile-examples/src/commit/0e231c289596cb4c445efb30168105914a8539a5/macros/contracts

8.2 Usage

(define-typed (hello typed-world) (string? string?)
typed-world)
(hello "typed")
;5 => "typead”
(hello 1337)
;5 => type error “a “a #<procedure string? (_)> 1337
(define-typed (hello typed-world) (string? string?)
"typed" ;, docstring
#((props)) ;; more properties
1337) ;; wrong return type
(procedure-documentation hello)
;5 => "typed"
(procedure-properties hello)
;5 =>((argument-types #<procedure string? (_)>)
s (return-type . #<procedure string? (_)>)
s (name . hello) (documentation . "typed") (props))
(hello "typed")
;5 type error: return value “a does mot match “a (1337) #<procedure
~ string? (_)>

Multiple Values and optional and required keyword arguments:

(define-typed (multiple-values num) ((A(a b) (> a b)) number?)
(values (* 2 (abs num)) num))

(multiple-values -3)

55 => 6

55 => -3

(define-typed* (hello #:key typed-world) (string? #:key string?)
"typed" #((props)) typed-world)

(hello #:typed-world "foo")

;5 => "foo"

;5 unused keyword arguments are always boolean #f as input

(hello)

;5 => type error "a “a #<procedure string? (_)> #f

;5 typing optional keyword arguments

(define (optional-string? x) (or (not x) (string? x)))

(define-typed* (hello #:key typed-world) (string? #:key

— optional-string?)
(or typed-world "world"))

(hello)

;5 => "world"

(hello #:typed-world "typed")

12/17

;. => ”typed”
(hello #:typed-world #t)
;5 => type error "a “a #<procedure optional-string? (z)> #t
;5 optional arguments
(define-typed* (hello #:optional typed-world) (string? #:optional
< optional-string?)
(or typed-world "world"))
(hello)
;5 => "world"
(hello "typed")
;5 => "typed"”
(hello #t)
;5 => type error “a “a #<procedure optional-string? (z)> #t

8.3 Benchmark

define-typed automates some of the guards of Optimizing Guile Scheme, so the compiler
can optimize more (i.e. if you check for real?) but keep in mind that these checks
are not free: use typechecks outside tight loops, except where they provably provide an
improvement.

#!/usr/bin/env bash

exec guile -L . "$0O"

; 1#

(import (define-typed) (statprof))

;5 The primitive procedure
(define (magnitude x y) (sqrt (+ (x x x) (*x y y))))
;5 The hand-optimized procedure from Optimizing Guile Scheme
(define (magnitude-handtyped x y)
(unless (and (real? x) (inexact? x) (real? y) (inexact? y))
(error "expected floats" x y))
(sqrt (+ (x x x) Gy y))))

;5 Typing helper (inlinable to prevent indirection costs)
(define-inlinable (float? x) (and (real? x) (inexact? x)))

;; Fast define-typed
(define-typed (magnitude-typed x y) (#f float? float?)
(sqrt (+ (x x x) Gk y y))))

;; Slower define-typed* with keyword support

13/17

https://dthompson.us/posts/optimizing-guile-scheme.html

(define-typed* (magnitude-typed* x y #:key foo) (#f float? float? #:key
— nOt)
(sqrt (+ (x x x) (*x y y))))

(statprof
(A _
(let 1p ((1i 0))
(when (< i 20000000)
(magnitude 3.0 4.0)
(Ip (+ 1 1))))))

(statprof
(A _
(let 1p ((1 0))
(when (< i 20000000)
(magnitude-handtyped 3.0 4.0)
(Ip (+ 1 1))))))

(statprof
(A _
(let 1p ((1 0))
(when (< i 20000000)
(magnitude-typed 3.0 4.0)
Ap (+ 1 1)1 N

(statprof
(A _
(let 1p ((1i 0))
(when (< i 20000000)
(magnitude-typed* 3.0 4.0)
(Ip (+ 1 1))))))

Results:
yA cumulative self
time seconds seconds procedure
94.12 2.12 1.99 benchmark.scm:6:0:magnitude
5.88 0.12 0.12 Y%after-gc-thunk
0.00 2.12 0.00 benchmark.scm:14:1
0.00 0.12 0.00 anon #x36acb070

Sample count: 51
Total time: 2.119640515 seconds (1.915531414 seconds in GC)

14/17

A cumulative self

time seconds seconds procedure
94.12 0.56 0.56 benchmark.scm:7:0:magnitude-handtyped
5.88 0.59 0.03 benchmark.scm:21:1

Sample count: 17
Total time: 0.592612292 seconds (0.440981526 seconds in GC)
yA cumulative self

time seconds seconds procedure
100.00 0.59 0.59 Dbenchmark.scm:10:0:magnitude-typed
0.00 0.59 0.00 benchmark.scm:28:1

Sample count: 13
Total time: 0.589839272 seconds (0.390181781 seconds in GC)
yA cumulative self

time seconds seconds procedure
94.83 2.24 2.16 benchmark.scm:11:0:magnitude-typedx*
3.45 0.08 0.08 Yafter-gc-thunk
1.72 2.28 0.04 benchmark.scm:36:1
0.00 0.08 0.00 anon #x36ac5070

Sample count: 58
Total time: 2.280908715 seconds (1.992148184 seconds in GC)

define-typed reaches the performance of the hand-optimized procedure magnitude-
handtyped while define-typed* is as fast as an untyped procedure in this case where
constraining types provides a big benefit.

8.4 Summary

Typecheks from define-typed provide a type boundary instead of forcing explicit static
typing.

Also you can do more advanced checks by providing your own test procedures and
validating your API more elegantly, but these then may not help the compiler produce
faster code.

But keep in mind that this does not actually provide static program analysis like while-
you-write type checks. It’s simply syntactic sugar for a boundary through which only
allowed values can pass. Thanks to program flow analysis by the just-in-time compiler,
it can make your code faster, but that’s not guaranteed. It may be useful for your next
API definition.

15/17

http://www.phyast.pitt.edu/~micheles/scheme/scheme12.html#are-macros-just-syntactic-sugar

define-typed: a static type syntax-rules macro for Guile to create API contracts
and help the JI'T compiler create more optimized code.

[2024-05-09 Do)

9 Guile imports in Makefiles

Use modules in the guile-session of Makefiles:

output: .guile-session
touch $(guile (list-ec (: 1 2) "$@"))
=> touch output output

.PHONY: .guile-session
.guile-session:
$(guile (import (srfi :42 eager-comprehensions)))

The import runs only once, but is guaranteed to run at every execution (due to .PHONY).

Importing srfi :42 provides Eager Comprehensions which are similar to Python’s
list-comprehensions.

[2024-05-28 Di]

10 minimal syntax rule that uses homoiconicity

(define-syntax-rule (writer (code ...))
(apply write (cdr (list code ...))))

(writer (display "Hello World"))

;5 => "Hello World"

;; while

(display "Hello World")

;5 => Hello World

5 " mo quotes

[2025-01-17 Fr|

16/17

https://srfi.schemers.org/srfi-42/srfi-42.html
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions

11 Generator functions with state

A generator is no magic: It just uses let to create a scope with a variable and then
defines a procedure that can access the scope.

(define (counter-init)
(let ((i 0))
(define (counter)
(set! i (1+ 1))
i)
counter))
(define a-counter (counter-init))
(list
(a-counter)
(a-counter)
(a-counter))

[2025-05-07 Mi]

17/17

	log-expression: print variable name and value
	Use Guile-yaml to search for the first match in a yaml file
	Count occurences of each key in an alist
	Common Substrings and Somewhat Cheap String Similarity
	Get all common substrings
	Somewhat Cheap String Similarity

	pivot a table
	Script with minimal startup time
	Shell scripts in Guile
	define-typed
	Implementation
	Usage
	Benchmark
	Summary

	Guile imports in Makefiles
	minimal syntax rule that uses homoiconicity
	Generator functions with state

