<2016-10-13 Do 23:05> Dr. Arne Babenhauserheide / draketo.de

Replacing man with info

GNU info is lightyears ahead of man in terms of features, with sub-pages, clickable links,
topic-spanning search, clean html- and latex-export and efficient interactive navigation.

But man pages are still the de-facto standard for getting quick information on a
GNU/Linux system.

This guide intends to help you change that for your system. It needs GNU texinfo >=
6.1.

Update: If you prefer vi-keys, adjust the function below to call info --vi-keys
instead of plain info. You could then call that function iv

Contents

1 Advantages of man-pages over pristine info 1

2 Fixing GNU info with a simple bash function 2

3 Examples 4
3.1 First check: Getting info on info: 4
3.2 Second check: Some random GNU command 4
3.3 Utility which also exists as libc function 5
3.4 Something which only has a man-page 6
3.5 A request for a man page section 6
3.6 Something unknowno 6

4 Summary 7

1 Advantages of man-pages over pristine info
I see strong reasons for sticking to man pages instead of info: man pages provide what

most people need right away (how to use this?) and they fail fast if the topic is not
available.

1/7

https://www.draketo.de

Their advanced features are mostly hidden away (i.e. checking the Linux programmers
manual instead of checking installed programs man 2 stat vs. man stat).

Different from that, the default error state of info is to show you all the other info nodes
in which you are really not interested at the moment. And man basename gives you the
commandline invocation of the basename utility, while info basename gives you libc
"5.8 Finding Tokens in a String".

Also man is fast. And works on most terminals, while info fails at dumb ones.

In short: man does what most users need right now, and if it can’t do that, it simply
fails, so the user can try something else. That’s a huge Ul advantage, but not due to
an inherent limitation of GNU info. GNU Info can do the same, and even defer to
man pages for stuff for which there is no info document. It just does not provide that
conveniently by default.

2 Fixing GNU info with a simple bash function

GNU Info can provide the same useful interface as man. So let’s make it do that.

To keep all flexibility without needing to adjust the PATH, let’s make a bash function.
That function can go into ~/.bashrc, or /etc/bash/bashrc.! I chose the latter, because
it provides the function for all accounts on the system and keeps it separate from the
general setup.

The function will be called i: To get information about any thing, just call i thing.
Let’s implement that:

function i()
{
INFOVERSIONLINE=$(info --version | head -n 1)
INFOVERSION="${INFOVERSIONLINE##x* }"
INFOGT5=$(if test ${INFOVERSION’%.*} -gt 5; then echo true; else echo false; fi)
start with special cases which are quick to check for
if test $# -1t 1; then
show info help notice
info --help
elif test $# -gt 1 && ! echo $1 | grep -q "[0-9]"; then
user sent complex request, but not with a section command. Just use info
info "$@"
elif test $# -gt 1 && echo $1 | grep -q "[0-9]"; then
user sent request for a section from the man pages, we must defer to man
man "$Q"

1Or it can go into /etc/bash/bashrc.d/info.sh (if you have a bashre directory). That is the cleanest
option.

2/7

elif test x"$1" = x"info"; then
for old wersions of info, calling info --usage info fails to
provide info about calling info
if test x"$INFOGT5" = x"true"; then
info --usage info
else
info --usage -f info-stnd
fi
else
start with a fast but incomplete info lookup
INFOPAGELOCATION="$(info --all -w ./"$@" | head -n 1)"
INFOPAGELOCATION_PAGENAME="$(info --all -w "$1".info | head -n 1)"
INFOPAGELOCATION_COREUTILS="$(info -w coreutils -n "$@")"
check for usage from fast info, <f that fails check man and
1f that also fails, just get the regular info page.

if test x"${INFOPAGELOCATION}" = x'"+*manpages*" || test x"${INFOPAGELOCATION}'
info --usage "$0"; # use info to read the known page, man or info
elif test x"${INFOPAGELOCATION_COREUTILS}" != "x" && info -f "${INFOPAGELOCAT

coreutils utility
info -f "${INFOPAGELOCATION_COREUTILS}" -n "$@"
elif test x"${INFOPAGELOCATION}" = x"" && test x"${INFOPAGELOCATION_PAGENAME}
unknoun to quick search, try slow search or defer to man.
TODO: it would be nice 2f I could avoid this double search.
if test x"$(info -w "$@")" = x"*manpages*"; then
info "$Q@"
else
defer to man, on error search for alternatives
man "$0@" || (echo nothing found, searching info ... && \
while echo $1 | grep -q '~[0-9]$'; do shift; done && \
info -k "$0" && false)
fi
elif test x"${INFOPAGELOCATION_PAGENAME}" != x""; then
search for alternatives (but avoid numbers)
info --usage -f "${INFOPAGELOCATION_PAGENAME}" 2>/dev/null || man "$@" ||\
(echo searching info &&\
while echo $1 | grep -q '~[0-9]$'; do shift; done && \
info -k "$0" && false)
else # try to get usage instructions, then try man, then
search for alternatives (but avoid numbers)
info --usage -f "${INFOPAGELOCATION}" 2>/dev/null || man "$@" ||\
(echo searching info &&\
while echo $1 | grep -q '~[0-9]$'; do shift; done && \
info -k "$0" && false)
fi

3/7

ensure that unsuccessful requests report an error status
INFORETURNVALUE=$7
unset INFOPAGELOCATION
unset INFOPAGELOCATION_COREUTILS
if test ${INFORETURNVALUE} -eq O; then
unset INFORETURNVALUE
return O
else
unset INFORETURNVALUE
return 1
fi
fi

3 Examples

Let’s see what that gives us.

These examples are evaluated on export, so what you see here is the exact result at the
time this page was generated.

3.1 First check: Getting info on info:
{{{fun}}}

i info | head
echo ...

File: info-stnd.info, Node: Invoking Info, Next: Variables, Prev: Miscellaneous Cc

12 Invoking Info
koo ok skokok ok skokok ok

GNU Info accepts several options to control the initial node or nodes
being viewed, and to specify which directories to search for Info files.
Here is a template showing an invocation of GNU Info from the shell:

info [OPTION...] [MANUAL] [MENU-OR-INDEX-ITEM...]

3.2 Second check: Some random GNU command

{{{fun}}}
i grep | head | sed 's/~~[\[[0-9]*m//g' # stripping simple colors

4/7

echo

File: grep.info, Node: Invoking, Next: Regular Expressions, Prev: Introduction, L

2 Invoking ‘grep’
ok Kok Kok ok Kok K Kok oK K

The general synopsis of the ‘grep’ command line is
grep [OPTION...] [PATTERNS] [FILE...]

There can be zero or more OPTION arguments, and zero or more FILE

Note: If there’s a menu at the bottom, you can jump right to it’s entries by hitting the m
key.

3.3 Utility which also exists as libc function
Checking for i stat gives us the stat command:

{{{fun}}}
i stat | head

File: coreutils.info, Node: stat invocation, Next: sync invocation, Prev:

14.3 ‘stat’: Report file or file system status

‘stat’ displays information about the specified file(s). Synopsis:
stat [OPTION]... [FILE]...

With no option, ‘stat’ reports all information about the given files.
... while checking for i 1ibc stat gives us the libc function:

{{{fun}}?}
i 1libc stat | head

File: libc.info, Node: Reading Attributes, Next: Testing File Type, Prev:

14.10.2 Reading the Attributes of a File

To examine the attributes of files, use the functions ‘stat’, ‘fstat’
and ‘lstat’. They return the attribute information in a ‘struct stat’

5/7

du invoc

Attribut

object. All three functions are declared in the header file
‘sys/stat.h’.

3.4 Something which only has a man-page

i man cleanly calls info man.

{{{fun}}’}
i man | head | sed "s,\x1B\[[0-9;]*[a-zA-Z],,g" # stripping colors

No output here, because only the interactive terminal shows the output.

3.5 A request for a man page section

i 2 stat cleanly defers to man 2 stat

{{{fun}}}
i 2 stat | head | sed "s,\x1B\[[0-9;]1*[a-2zA-Z],,g" # stripping colors

No output here, because the export system does not have libc man pages installed.

3.6 Something unknown

In case there is no info directly available, do a keyword search and propose sources.

{{{fun}}’}
i em | head
echo ...

nothing found, searching info ...

"(bash)Bash Variables" -- BASH_REMATCH

"(bash)Readline Init File Syntax" -- completion-query-items

"(bash)Bash Variables" -- EMACS

"(bash)Readline Init File Syntax" -- emacs-mode-string

"(bash)Bash Variables" -- INSIDE_EMACS

"(bash)Commands For History" -- non-incremental-forward-search-history (M-n)
"(bash)Commands For History" -- non-incremental-reverse-search-history (M-p)
"(coreutils)rm invocation" -- -, removing files beginning with
"(coreutils)cut invocation" -- --complement

6/7

4 Summary

i thing gives you info on some thing. It makes using info just as convenient as using
man.

Its usage even beats man in convenience, since it defers to man if needed, offers alter-
natives and provides named categories instead of having to remember the handbook
numbers to find the right function.

And as developer you can use texinfo to provide high quality documentation in many
formats. You can even include a comprehensive tutorial in your documentation while
still enabling your users to quickly reach the information they need.

We had this all along, except for a few nasty roadblocks. Here I did my best to eliminate
these roadblocks.

/7

https://www.gnu.org/software/texinfo/manual/texinfo/texinfo.html#Overview

	Advantages of man-pages over pristine info
	Fixing GNU info with a simple bash function
	Examples
	First check: Getting info on info:
	Second check: Some random GNU command
	Utility which also exists as libc function
	Something which only has a man-page
	A request for a man page section
	Something unknown

	Summary

