
<2021-05-08 Sa> Dr. Arne Babenhauserheide / draketo.de

Evolutionary optimization of
keyboard layouts

Whatever the future brings, I will be typing a lot. Best make sure I use good tools.

Update 2023-08: Dario Götz found the noted layout with his optimizer, a layout
that looks pretty good: Noted (there’s also an English version of the text).

Update 2023: There’s nowadays a much faster optimizer by Dario Götz using the
same concept of typing cost calculation. It enables much nimbler experimentation:
https://github.com/dariogoetz/keyboard_layout_optimizer

Update 2022-11: Since spring 2021 mine has the z in the upper right corner. The
current version is described on neo-layout.org/Layouts/mine/.

Contents

1/16

https://www.draketo.de
11020379-crieo-mnths.svg
https://dariogoetz.github.io/noted-layout/noted_deutsch.html
https://dariogoetz.github.io/noted-layout/
https://github.com/dariogoetz/keyboard_layout_optimizer
https://neo-layout.org/Layouts/mine/


History

It was around 2011 and I worked on my Diploma thesis as I found the community of
people around the Neo Layout, German Keyboard-Nerds working on better keyboard
layouts than the accident of history1 that is QWERTY (QWERTZ in Germany).

At a similar time, another typing-enthusiast joined, and he was unhappy with the Neo-
Layout, since he was used to typing English with Dvorak and hoped that Neo would
provide a typing experience like Dvorak, but for German text (where Dvorak fails badly).
He started to write a program to improve the layout so it would feel more like Dvorak,
but work well for German. I was fascinated, but found his approach lacking and thought
“I can do that better”.

Over the next year we both improved the systems. Competition arose. He later adopted
an existing optimizer from the Neo-Community along with the AdNW layout and I kept
improving my optimizer with more and more criteria we found in the Neo-Community
by conducting collaborative typing tests to see where layouts were still lacking.

You can get my optimizer from hg.sr.ht/~arnebab/evolve-keyboard-layout.

Then I found a layout that looked very good, but for which I lacked experience with
high speed typing — things that hurt when typing fast again — and I decided to do a
3 year test to see which problems would arise in high-speed typing. In the meantime
one who called themself Effchen used a simplified version of my optimizer and combined
that with lots of manual improvements and intuition to create the Bone-Layout.

My 3 year test extended to 7 years while I struggled to find the time for implementing
fixes for problems I found while typing fast, but in January 2020 I used an Aarlaubsday
at work to finish the regularity calculations — the last missing piece for better layouts
— and around the middle of 2020 I finally had a new layout to test.

It is called mine, and you can find functional layout descriptions of it from the Neo-
Community:

→ Mine ←

1The story how QWERTY became dominant is surrounded by fiction — and even the article in the
previous link builds on earlier work that — while unveiling problems in reasoning of others —
succumbs to its own pitfalls to argument against path dependence, because it argues that too little
retraining benefit in raw typing speed to be economically viable for companies to retrain all typists
does not show a market failure or path dependence, even though it shows exactly both, because its
argumentation would not apply if (a) typing speed were mostly dependent on training time (which it
is, so the old layout always had an advantage in any competition), or (b) people learned an optimized
layout as first keyboard layout. The second option was not even considered. What that article
did not have to check its own claims is something we now have: actual metrics of layouts based on
identified problematic movements. That’s what you can see in the graphics on this page: QWERTY
is bad for typing.

2/16

https://www.neo-layout.org
https://hg.sr.ht/~arnebab/evolve-keyboard-layout
https://www.disy.net
https://neo-layout.org/Lernen/Grafiken/#mine
https://www.smithsonianmag.com/arts-culture/fact-of-fiction-the-legend-of-the-qwerty-keyboard-49863249/
https://web.archive.org/web/20090917210614/http://www.reason.com/news/show/29944.html


Yesterday I began to type with it. It will still need some tweaks, because no optimizer
can capture the whole complexity of the typing process, but from now on you are invited
to join.

Required changes: Already known weaknesses of the mine-version above which
must be fixed before a final version:

• mpf is hard to type, because it is all on the index finger. This is a not so
common but too common triple in German. since we stopped talking about
Impfungen every day, this stopped being annoying.

Here I want to share some resources with background information.

Typing cost calculation

My optimizer calculates a score for each layout that gives the cost of typing: The total
penalty per letter. That score is an aggregate from many different criteria. The most
important are:

key position how easy are keys to reach, weighted by how common they are in writing.

finger repeats how often do you have to use the same finger twice

top <-> bottom how often do you have to move with the same finger between the top
and the bottom row

(rows²/dist)² how much do you have to move vertically? This minimizes stretch of the
fingers.

handswitching how often do you switch hands (long sequences on the same hand get
complex)

same hand after unbalancing if a key requires moving the whole hand, do you have a
hand switch afterwards to give your hand time to move back?

neighboring unbalance how often do you have to hit a neighboring key after a key
forces your hand to move. Those require painful stretching of the fingers.

patterns how often do you have to do risky finger-transitions, minimizing transitions
between ring finger - middle finger (dangerous for the sinews) and pinky - ring
finger (typically slow).

manual penalty a table of bigrams given by positions of the keyboard that should be
avoided

disbalance of fingers how well does the load on the fingers match, from pinky to
index-finger 1.0, 1.6, 2.0, 2.0?

3/16

https://hg.sr.ht/~arnebab/evolve-keyboard-layout/


hand disbalance how even is the load distributed between the hands?

Aside from these movement costs there are three criteria for the ease of learning:

shortcut keys are the shortcut keys XCVZ easily reachable on the left side?

asymmetric bigrams when switching hands, how often do you have to hit a key that
is not in a mirror-position to the first (an example mirror-position would be right
pinky base-row to left pinky base row).

asymmetric similar keys are similar keys in similar position? For example p is a hard
version of b and t is a hard version of d, so if p is below b, t should also be below
d. For German: The umlauts äöü should be in the same relative positions to their
base letters aou.

A final criterion is irregularity:

irregularity how regular is the ease of typing? If there are short segments of text that
are really hard to type in between easy to type text, those cause the typing flow
to stutter. The calculation uses the correlation between the two bigrams in each
trigram as proxy: Multiply the cost of the two bigrams in a trigram, add those
values together for all trigrams, and take the square root of the result.

An important and still imperfect part of this calculation is the corpus. We used a
pre-aggregated corpus by the University of Leipzig that mainly built on newspapers as
starting point and added with lower weight sources from email, wikipedia, a keylogger,
chatlogs, the bash history, source-code, and Gutenberg texts. The exact definition can
be found in the file ngrams.config.

In addition to direct bigrams, the optimizer splits trigrams and adds with lower weight
the first and third letter as indirect bigrams. The same is done for bigrams with
uppercase-letters (they are split into shift-first, first-second, shift-second) and special
characters.

That’s not all, but it covers the most important parts. You can find the details in the files
config.py (weighting and basic definitions used) and layout_cost.py (the implementation).

Assigning weights with typing tests

These parameters were weighted against each other by creating three layouts for each
parameter: One optimized with much higher weight for that parameter, one normal,
one anti-optimized for this parameter by giving it negative weight. When increasing the
weight of one parameter a lot, all other parameters become somewhat worse.

Then we did actual blind typing tests and ordered the layouts by quality. If the highly
optimized layout performed worse, we checked which other parameter caused that. We

4/16

https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/ngrams.config?rev=tip
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/config.py?rev=tip
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/layout_cost.py?rev=tip


then knew that the difference in this other parameter had a higher impact on typing
quality than the parameter we actually optimized for.

That allowed us to nudge the different parameters into roughly fitting weight.

Finally we created many layouts and did practical typing tests with them, identified
their weaknesses, matched them with optimization criteria and adjusted the weights for
criteria to minimize the main problems we found. You can find some of the experiments
and their conclusions in the notes in the folder Empirie.

With the explanations done, we can get to the results.

Layout Comparison Table

Update 2022: You can get more and updated statistics from http://
keyboard-layout-optimizer.herokuapp.com/, a website with results from a
rust-based reimplementation of the optimizer used here.

The following table compares the cost function for several layouts, both the aggregated
cost (tppl: total penalty per letter) and the individual components. The layoutstring
defines the layout using first the base row, then the top row, and finally the bottom row.
Sorting by the layoutstring groups similar layouts together, because the base row has
the biggest impact on typing.

Keep in mind that values for layouts generated with my optimizer (mine, bone, cry)
and other layouts are not completely comparable, because other optimizers have
different criteria for optimization. The uncertainty of the parameters to optimize
could be higher than the difference between the layouts. Also keep in mind, that
bone and cry were generated from older versions of my optimizer, so the criteria
did not actually match those of mine, which might compensate for this effect and
make the numbers comparable. Mine optimized for more criteria than the others.
If those criteria are actually important (I think so: they are mostly those for ease
of learning and regularity), this might make mine better. Note the high usage of
"could" and "might" in this paragraph. We do not have strong estimates of the
uncertainties of the parameters to optimize for.

Note: For ease of conversion from csv to table, the numbers here are not rounded but
truncated: 12.8 is given as 12.

5/16

https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/empirie?rev=tip
http://keyboard-layout-optimizer.herokuapp.com/
http://keyboard-layout-optimizer.herokuapp.com/


Table 1: Definition of different layouts with their total cost. Lower is better.
Layout-Name layoutstring tppl
mine "crieo_mntsh-jluaq_wbdgyzß-

vxüäö_pf,.k"
11

KOY "haeiu_dtrnsf-k.o,y_vgclßz´-
xqäüö_bpwmj"

12

AdNW "hieao_dtrnsß-kuü.ä_vgcljf´-
xyö,q_bpwmz"

13

bone "ctieo_bnrsg-jduax_phlmwqß-
fvüäö_yz,.k"

13

cry "criey_ptsnh-bmuaz_kdflvjß-
xäüoö_wg,.q"

13

Workman "ashtg_yneoiä-qdrwq_jfupüöß-
zxhcv_kl,.’"

14

Dvorak "aoeui_dhtns–’,.py_fgcrl/=-
;qjkx_bmwvz"

14

Colemak "arstd_hneio‘-qwfpg_jluy;[]-
zxcvb_km,./"

15

Capewell "aresf_ktnioö-.mydg_;wh,’äü-
xczvj_bpluq"

17

Carpalx QGMLWY "dstnr_iaeohü-qgmlw_byv;äöß-
zxcfj_kp,.’"

17

Neo 2 "uiaeo_snrtd-xvlcw_khgfqyß-
üöäpz_bm,.j"

19

QWERTZ "asdfg_hjklöä-qwert_zuiopü+–
yxcvb_nm,.-"

37

Table 2: Comparison of the properties of different layouts. Lower is better.
Layout-Name tppl key position finger re-

peats
top <-> bot-
tom

(rows²/dist)²

mine 11 58 54 24 105
KOY 12 60 53 25 111
AdNW 13 54 55 24 113
bone 13 65 56 22 124
cry 13 67 55 23 114
Workman 14 97 52 25 121
Dvorak 14 78 55 28 119
Colemak 15 106 56 22 153
Capewell 17 76 60 20 148
Carpalx QGMLWY 17 154 54 26 143
Neo 2 19 199 53 24 180
QWERTZ 37 297 68 22 258

6/16



Table 3: Comparison of the properties of different layouts. Lower is better.
Layout-Name tppl handswitching same hand af-

ter unbalanc-
ing

neighboring
unbalance

mine 11 15 14 10
KOY 12 7 18 16
AdNW 13 7 16 16
bone 13 11 26 12
cry 13 15 14 11
Workman 14 28 10 10
Dvorak 14 9 24 21
Colemak 15 23 16 18
Capewell 17 22 19 24
Carpalx QGMLWY 17 15 23 29
Neo 2 19 11 22 14
QWERTZ 37 27 31 46

Table 4: Comparison of the properties of different layouts. Lower is better.
Layout-Name tppl patterns manual

penalty
disbalance of
fingers

hand disbal-
ance

mine 11 29 18 7 0.84
KOY 12 28 18 25 1.10
AdNW 13 37 18 14 1.10
bone 13 29 15 9 1.11
cry 13 25 14 12 0.81
Workman 14 30 15 18 1.46
Dvorak 14 26 23 45 1.92
Colemak 15 32 15 17 1.15
Capewell 17 57 16 46 0.51
Carpalx QGMLWY 17 24 19 18 0.83
Neo 2 19 19 14 20 0.26
QWERTZ 37 33 16 376 2.04

7/16



Table 5: Comparison of the properties of different layouts. Lower is better.
Layout-Name tppl shortcut keys asymmetric

bigrams
asymmetric
similar keys

irregularity

mine 11 0.0 0.85 11 52
KOY 12 1.09 0.86 41 54
AdNW 13 1.09 0.85 53 63
bone 13 0.73 0.86 34 72
cry 13 0.73 0.85 63 61
Workman 14 0.73 0.88 69 45
Dvorak 14 1.46 0.86 48 57
Colemak 15 0.36 0.88 54 60
Capewell 17 0.36 0.86 73 59
Carpalx QGMLWY 17 0.36 0.87 72 64
Neo 2 19 0.36 0.84 41 97
QWERTZ 37 0.73 0.87 75 103

Layout Cost Graphics

The following graphics visualize the typing-properties of the layouts.

The opacity of the keys represents their frequency in the corpus. Darker keys are more
common. The circle in the upper left of a key shows how often that key appears at the
beginning of a word.

Each line between keys represents a bigram: Switching from one letter to the next.
Its thickness shows how often that bigram occurs in the corpus we use (30% English,
60% German, 10% others). Its color shows the cost calculated for that bigram by the
optimizer.

8/16



mine

KOY

9/16

11020379-crieo-mnths.svg
12405405-haeiu-dtrnsf.svg


AdNW

bone

10/16

13083309-hieao-dtrns.svg
13179949-ctieo-bnrsg.svg


cry

Workman

11/16

13180320-criey-ptsnh.svg
14472372-ashtg-yneoi.svg


Dvorak

Colemak

12/16

14827640-aoeui-dhtns.svg
15906265-arstd-hneio.svg


Capewell

Carpalx QGMLWY

13/16

17148902-aresf-ktnio.svg
17720221-dstnr-iaeoh.svg


Neo 2

QWERTZ

One-Hand layouts

Adjusting the optimization criteria allows optimizing layouts for one-hand usage.

The following examples both focus on one hand, but also on longest possible sequences
on one side. If you have to move your hand to the other side of the keyboard, the hand
should ideally stay there for one or two more letters to reduce the disruption of the
typing flow.

The left-hand-layout could actually come in handy if you often need to type with one
hand at the mouse or if one of your hands is injured. Or with a kid on one arm (that’s
how I started experimenting with one-hand-layouts).

14/16

19146491-uiaeo-snrtd.svg
37055987-asdfg-hjkl.svg


Learning a new layout typically takes a few weeks to three month to be back at your
previous speed.

Both layouts are untested, though (if you test one of them, please tell me your results!).

Left-Hand Layout

You can test the left-hand-layout on GNU Linux using its xmodmap. I switch to lv
layout before xmodmap: setxkbmap lv && xmodmap tir-links.xmodmap

Right-Hand Layout

You can test the right-hand-layout on GNU Linux using its xmodmap. I switch to lv
layout before xmodmap: setxkbmap lv && xmodmap neat-rechts.xmodmap

15/16

https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/empirie/tir-links.xmodmap
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/empirie/neat-rechts.xmodmap


Conclusion

Why all that? After typing for 7 years with the cry-layout, I don’t ever want to go back
to QWERTZ. It feels awkward and clumsy, always having to do unnecessary extra steps.

If you want to give this a try, have a look at neo-layout.org, use a translator if necessary.
Join the German Neo-Community. Get information about other layouts.

If you’re from Bulgaria, you already use an ergonomic keyboard. We in Germany envy
you for that.

If you write other languages besides English and German, or you never write German,
you could use the optimizer with a different corpus. Have a look at evolution.py and
the README.md. If you can only use one hand, you might benefit from giving the
onehandright branch a try, and maybe adapting it for the left hand (if that’s your good
hand). One example of a one-hand-layout is neat-rechts (xmodmap).

I hope that mine will be the keyboard layout I stick to for the rest of my life — or at
least for as long as I can use both hands to type. And I hope others can pick up where I
started and generate more optimized layouts. And maybe this can become a base for a
better standard layout for the EU so we no longer have to look at Bulgaria with envy
but can instead celebrate them for spearheading an evolution of typing in Europe.

16/16

https://www.neo-layout.org
https://www.neo-layout.org/Beitragen/Community/
https://www.neo-layout.org/Layouts/andere/
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/evolution.py?rev=tip
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/README.md?rev=tip
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse?rev=0948051aa183002486d184a4accccc8673b1a2b6
neat-rechts.png
https://hg.sr.ht/~arnebab/evolve-keyboard-layout/browse/empirie/neat-rechts.xmodmap

